I. INTRODUCTION

A.
INTRODUCTION


Energy storage is very limited in AUV’s. To assist with energy management, data gathering missions have been proposed where the vehicle should sit on the bottom and gather acoustic/video/chemical data over extended periods of time. In this grounding scenario, thrusters may be used. However, there are two disadvantages for this method: high energy consumption and restricted use close to the ocean bottom. The motivation for this thesis is to study a low cost, simple soft grounding capability for a submersible vehicle using controllable ballast. For simplicity, water ballast is considered.  The design of the control system is based on the NPS Phoenix AUV. The ballast system is designed to control the weight addition into or out of the two ballast tanks where instead of a bang-bang or a fuzzy logic controller which actually turns on and turns off the pumps , the developed control law controls the pump flow rate, keep the pitch angle and depth rate within limits.

B.
BACKGROUND

Ballast control of vehicles is not a new subject and we can find many examples beginning in the 1900’s, the non-rigid airships are very good examples of ballast control. One of the most important elements of a non-rigid airship is the ballonet-system. A ballonet as seen in Figure 1-1 is an airbag (one or two of them) inside the envelope, which is provided with air from a blower or directly from the engine unit. The air could be removed from the ballonet through the valves. If the airship has a front and aft ballonet then the height of the airship can be steered. For example, if the aft ballonet is filled with more air, then the airship will become heavier in the rear part of the envelope and the ship will incline increasing the altitude of the ship by using the engines. As Figure 1-2 depicted, the airship can also be trimmed through a front and aft ballonet [Ref. 1].

For most of the maneuvering underwater vehicles, the depth control is normally provided by hydroplanes. As an example, consider the NPS Phoenix AUV. It has two sets of control surfaces, namely the bow and the stern planes. At low speed, the control surfaces cannot provide enough control authority and the ballast control problem is very complex due to nonlinear, time-varying, uncertain hydrodynamics. There are some designs that used bang-bang control system [Ref. 2]. The ARPA’s Unmanned Undersea Vehicle (UUV)  employs a fuzzy logic ballast controller which is comparable with the performance that can be obtained from standard control techniques, but does not require traditional linear or nonlinear design methods. 

[image: image1.wmf]
Figure 1-1. Sectional elevation of the Parseval-Airship "PL VI", 1910.

(Marked areas are the ballonets inside the envelope) From [Ref. 1]

[image: image2.wmf]
Figure 1-2. Elevator controling via front and aft ballonet, (newer type).

From [Ref . 1]

In another fuzzy logic control model, a 15 state Kalman filter was developed to provide estimates of the motion variables and the applied lift and torque acting on the UUV. The control law decides between three possible control actions; pump water in both tanks, pump water out of both tanks and turn both pumps off. The fuzzy input state space is composed of depth error and depth rate, and each is divided into partitions. The fuzzy controller interpolates between the partitions allowing the control to vary smoothly as the states move from one partition to another. These movements of states were provided by on and off of ballast pumps [Ref. 3].

C.
THESIS MOTIVATION AND GOALS


The thesis will outline the development of a depth controller using sliding mode control techniques for a neutrally buoyant vehicle. The sliding mode controller is designed on the basis of the simplified four degrees of freedom vertical plane equations of motion. 


A linear quadratic regulator (LQR) proportional approach is then utilized for the design of the ballast controller, which produces flow rate commands, allowing the vehicle to have a soft grounding behavior.


These two controllers used a logic based depth regulator to provide realistic simulation of the vehicle’s flight and grounding capabilities for a single mission.

D.     
THESIS ORGANIZATION

In Chapter II, the equations of motion in six degrees of fredom are reviewed simplified for  vertical plane case [Ref. 4], which provides the basis for the depth control design. Chapter III discusses the design of a flight controller with sliding mode techniques, and the development of the grounding controller using different methods of ballast control. Chapter IV outlines the methods and functions used for the simulating the designed systems. Chapter V discusses the results of the simulation studies which were conducted by using parameters of NPS  Phoenix AUV. The hardware components like sensors, pumps, and tanks needed for ballast control explained in Chapter VI. The conclusions and recommendations can be found in Chapter VII.

II. VEHICLE MODELING AND EQUATIONS OF MOTION

A.
Introduction
 
For simulation of maneuvering and motion control of the vehicle, it is assumed that [Ref.4] : 

1.
The vehicle behaves as a rigid body 

2.
The earth’s rotation is neglected as far as acceleration components of the                                 

vehicle’s center of mass is concerned.

3.
The primary forces that act on the vehicle have inertial, gravitational  origins and hydrostatic, propulsion, thruster, and hydrodynamic forces from lift and drag.

B.
Development Of The Six Degrees Of Freedom Non-Linear Equations Of Motion For A Marine Vehicle
The following work concerned with development of the six degrees of freedom non-linear equations of motion for a marine vehicle includes the equations described by Healey [Ref. 4]. A vector 
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 of vehicle body frame velocities and a vector 
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 of global positions was defined as: 
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then considering M as a 6 x 6 mass matrix including translational and rotational inertial elements, the equations of motion can be written in the following vector form,
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and,
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With suitable knowledge of the excitation force and moment loads, a solution for the vehicle’s dynamics can be obtained. A more detailed insight into the development of these differential equations, in first order form given by the foregoing analysis shows,
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and,
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It helps here to define the cross product coefficient matrix so that,
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where,
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The next step is to collect all inertial terms into a 6 x 6 mass matrix including the inertia cross coupling effects,
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The remaining terms on the left hand side arising from centripetal and coriolis accelerations become,
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The double vector cross products are nonlinear in the primary velocity variables and hence the need for the nonlinear functional, f((). The reader can perform the indicated manipulations to express individual equations within the set.It may also help if the screw symetric matrix S(() is used in place of the vector cross product [Ref. 5].This yields,

((x)=
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The screw symetric matrix involving the vector cross product of 
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 with other vector is
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The components of the sum of all external forces and moments acting on the vehicle body are separated in the above analysis into six components each acting along the vehicle body fixed coordinate axes and form the total vector of forces and moments as

F(t)=[X((t),Y((t),Z((t),K((t),M((t),N((t)]’


   (2.12)

where the vector components in order refer to the surge, sway, heave forces, and the roll, pitch, and yaw moments respectively.The expressions for X( etc. are found as the sum of all external forces acting on the vehicle.


In the component form, these external forces can be defined as follows,
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where 
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If  
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 is the mass matrix of inertia of the body, in component form ,


[image: image24.wmf]k

ˆ

H

j

ˆ

H

i

ˆ

H

H

z

y

x

+

+

=

r





   (2.15)

and,
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If the external moment, 
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and in component form,
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where,

Ix 
     : vehicle mass moment of inertia around the x-axis



(K,M,N)  : roll, pitch, and yaw moments, respectively



(p,q,r)      : roll, pitch, and yaw rates, respectively



(
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  : surge, sway, and heave velocities, respectively



x
    : body fixed axis, positive forward



xG
    : longitutional position of center of gravity



(X,Y,Z)
    : surge, sway, and heave forces, respectively



y
    : body fixed axis, positive starboard



yG
    : athwartship location of center of gravity



z
    : body fixed axis, positive down



zG
    : vertical position of center of gravity
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  : roll, pitch, and yaw Euler angles, respectively


These equations are the three rotational equations of motion, and together with the translational equations, are the six degrees of freedom equations of motion of a rigid body expressed in a coordinate system moving with the body, fixed at the body’s geometric center [Ref. 4].

C.
External Forces and Moments



The right-hand sides of Equations 2-13 and 2-20 may be expanded to include the sum of individual component forces and moments arising from hydrostatic and hydrodynamic sources and external forces arising from control surface deflections and propeller thrust [Ref 6]. These equations are expressed as follows:
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Hydrostatic restoring forces and moments are due to the vehicle weight W and buoyancy B. The net buoyancy force in the inertia system is (W-B) in the positive Z-direction (downwards). Therefore, in the ship fixed system,
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The moments due to W and B in the component form,
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Forces and moments due to control surface deflections are reflected as added drag in surge, while in sway, heave, pitch and yaw they are directly proportional to control surface deflection [Ref. 6],
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where,
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 rudder deflection
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The terms with subscript P represents the forces and moments generated by the propeller revolutions, n. The most significant of these forces is the propeller thrust, 
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 represent small asymmetry effects generated by the propeller.These three terms would be zero for the vehicle equipped with two symmetrically loaded counter-rotating propellers.


The hydrodynamic forces and moments are expressed as polynomial functions of the translational and rotational velocities of the vehicle with respect to the water by using a constant coefficient model,
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where R(u) represents the vehicle’s resistance curve, which is negative since positive direction is ahead.The cross flow integral terms are integrated over the length of the body and they model quadratic drag forces.The cross flow velocity 
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D.
Equations of Motion in Vertical Plane

We will deal with only vertical plane variables; i.e., heave, pitch, and surge.The vertical plane stability analysis involves heave and pitch motions.However, the surge equation couples into pitch and heave through the metacentric height zG.This is a dynamic coupling, and could be eliminated by redefining hydrodynamic coefficients with respect to the ship’s center of gravity instead of its geometric center.


Restricting the motions of the vehicle to the vertical (dive) plane, the only significant motions that must be incorporated to model the vehicle in the dive plane are, the surge velocity (u), the heave velocity (w), the pitch velocity (q), the pitch angle (
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) and the global depth position (z).This restriction simplifies the previously developed equations to a system of four non-linear equations of motion, which are,
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These equations can be linearized for a level flight path when the dive plane angle is zero, (o=0. By setting all the time derivatives to zero and neglecting for the moment the hydrodynamic drag terms, the following are obtained :
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If  the vehicle is neutrally buoyant :
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Then the Equations 2.40-2.43 are linearized as :
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Both Z(   and M(  are a linear combination of the respective stern and bow hydrodynamic control surface coefficients and the respective input value of (.This makes the system of equations as a multiple input system.To reduce this system into a single input system, the linear combination of control inputs will be modified into the following form,
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This will allow a single input ( to control both stern planes and bow planes, and will cause the bow planes to be slaved to the stern planes.This technique is known as dual control.The value of ( will range from –1 to 1.The selection of the value of ( will allow the planes to operate as desired for the particular maneuvering condition, i.e., ( = 0 for no bow plane control, ( = -1 for bow plane and stern plane control opposed to each other, resulting the maximum pitch moment, and ( = 1 for bow and stern plane control in the same direction, resulting the maximum heave force.


These equations can be shown in matrix format as follows,
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where :
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For the case considered during this work, the vehicle has also two ballast tanks which were designed to be used during the grounding. These ballast tanks can be seen in Figure 2-1.
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Figure 2-1. The Location of Ballast Tanks in the AUV
The new forces are (w1 and (w2 and since the ballast tanks are not located in the same distance from the center of gravity of the vehicle there will be also two moments, L1(w1  and L2(w2.  There will be also small change in moment of inertia. So all these changes can be listed as;
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And the new equations of motion become,
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After linearization, 
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and in matrix form,
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where ;         
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III. CONTROL SYSTEM DESIGN


Flight control and weight control compose two main subsystem of a soft grounding system. In flight control the vehicle is kept neutrally buoyant and the plane angles are the control inputs. However in weight control, the flow rates for both balast tanks are controlled with zero forward velocity and plane angle. These two components of the designed control system were explained in following sections.

A.
FLIGHT CONTROL


The dynamics of underwater vehicles are described by highly nonlinear systems of equations with uncertain coefficients and disturbances that are difficult to measure. An automatic controller for this kind of vehicle must satisfy two conflicting requirements: First, it must be sophisticated enough to perform its mission in an open ocean enviroment with ever-changing vehicle/environment interactions. Second, it must be simple enough to achieve real-time control without nonessential computational delays. Sliding mode control theory yields a design that fulfills the above requirements. It provides accurate control of nonlinear systems despite unmodeled system dynamics and disturbances. Furthermore, a sliding mode controller is easy to design and implement. A very effective sliding mode controller can be developed from the linearized equations of motion for an underwater vehicle [Ref. 7].


The sliding mode control design problem can be stated as follows: 

Given the system;
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where the state vector equation is,
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Choose the Lypunov functions :
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where

      
[image: image131.wmf]x

s

)

x

(

T

=

s

  .



     (3.4)


The scalar function ((x) can be viewed as a weighted sum of the errors in the states x. For stability, it is desired the time derivative of V(x) to be negative,
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This can be achieved if
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which means that 
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Using 
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and solving for u, the control law is obtained,
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In this control law, the first term is nonlinear state feedback, and the second term is a switching control law. The term (2 is an arbitrary positive quantity, we usually select it such that 
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and
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when the system is linearized, 
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The previously developed linear state matrix equation is,
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where 
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but the dynamics and input matrices should be replaced by

A = M-1Ao , and B = M-1Bo


   (3.17)

and the system is controlled with sliding mode controller where
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The closed loop dynamics matrix is 
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then


[image: image153.wmf]0

Bk

s

A

s

A

s

Bk

s

A

s

)

B

s

(

k

T

T

T

T

T

1

T

=

-

Þ

=

Þ

=

-

  ,
   (3.20)

so the control law becomes ,
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The gain vector k can be found easily by using Matlab. The Matlab command place accepts as inputs the A and B matrices along with a vector of the desired closed loop poles and returns the vector k. 
B.
WEIGHT CONTROL


In the second part of the system, the balast tanks were used to ground the vehicle on the ocean floor. The vehicle’s grounding can be simulated by adding weight proportionally to both tanks at constant flow rate and by using zero plane angle (
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) defined previously. It is needed to add weight proportionally to eliminate the moment effect since these balast tanks are not located in the same distance from the center of gravity. As it can be seen from the Figure 3-1, L1 > L2.
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Figure 3-1. The Location of Ballast Tanks

To get zero moment, 
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If the ballast pumps only pump water into the tanks at fixed rate, there is no control on pitch or depth rate and pitch angles can develop large values. It is proposed therefore, that in order to keep the pitch angle within limits, flow rate of each tank should be controlled separately. This can be achieved by defining two more states to be added to those existing four states. And further these two states are, 
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where 
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 represents change of weight in tank i and fi  represents flow rate of pump i. So the nonlinear equations of motion  become :
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During the grounding operations, plane angles (
[image: image168.wmf]s
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) will be zero. Removing related terms, the new equations become, 
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where 
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When these equations are linearized,
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Flow rates for balast tanks are control inputs. In the next step, the control system will be designed to keep the pitch angle and depth rate within the limits during grounding of the vehicle.

C.
WEIGHT CONTROL WITH LINEAR QUADRATIC REGULATOR


The system was given as, 
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where the gain matrix K of the optimal control vector,
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minimizing the performance index gives
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where Q is a positive-definite Hermitian matrix and R is a positive-definite Hermitian matrix.      (uTRu) term accounts for the expenditure of the energy of the control signals. The matrices Q and R determine the relative importance of the error and the expenditure of this energy. Q is the state weighting matrix and R penalizes the control effort. It can be choosen relatively small elements of Q compared to R for the control law which will tolerate errors in x with low control effort u. Chosing larger elements of Q compared to R will result in tight control which means small errors will need considerably more control effort. The advantage of using the quadratic optimal control system is that the system will be stable as long as it is conrollable [Ref. 8].


By using the general equations of optimal control to solve the LQR problem gives the Hamiltonian 
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where p is an unknown vector (co-state vector). The necessary conditions for optimality are,
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and the boundry conditions are,
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where 
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 is free, 
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 is arbitrary and F is symmetric and positive-definite weighting matrix. So, the quantity inside the square brackets must be equal to zero and this produces a new form of boundary condition,
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Now, the equations that have to be solved can be listed as follows,
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From above equations, p(t) can be calculated and this will provide u as a function of time from 
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where S(t) is a symmetric positive-definite matrix. Also,
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and ,
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and for this to be true for all x, 
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This is called Riccati matrix differential equation and S(t) can be obtained by backwards integration of this equation. Since 
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 the closed loop optimal control law can be found by
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where S can be found by solving the algebraic Riccati equation for the positive-definite S ,
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In Matlab, the command

lqr(A,B,Q,R)

solves the continuous-time, linear, quadratic regulator problem and the associated Riccati equation. This command calculates the optimal feedback gain matrix K for control law which minimizes the performance index.

D.
GROUNDING WITH VERTICAL THRUSTERS

The bladed thrusters are the essential elements of improved vehicle positioning systems. With automatic position control, the thrusters enable important scientific and industrial tasks such as automatic docking, station keeping, precise surveying, inspection, sample gathering and manipulation. Incorporating precise models of thruster dynamics into the feedback control systems of marine vehicles promises improved vehicle positioning [Ref. 9].

Most small-to-medium sized underwater vehicles are powered by electric motors driving propellers mounted in ducts. The propeller is mounted in a duct or shroud in order to increase the static and dynamic efficiency of the thruster. Thrusters are subject to serious degradation due to axial and cross flow effects. Axial flow effects can be reasonably approximated by the modeling of the thruster unit alone, the velocity of the fluid entering the thruster shroud effectively changes the angle of attack of the propeller , thus altering the force produced. Cross flow effects are much more difficult to model and are highly dependent on the position of the thruster on the vehicle. The amount of force produced by the thruster will reduce the overall gain of a control system unless these effects are specifically in the controller design[Ref. 10].

For this work, NPS Phoenix vehicle is taken as an example. Figure 3-2 shows the locations of vertical and horizontal thrusters on the vehicle.Those four tubes represents the thruster shrouds. In Figure 3-3,  the vertical thruster tubes can be seen throughout the vehicle. Thruster blades are located close to the bottom of those tubes. 

Thruster moment and force equations were developed by Louis L.Whitcomb and Dana R.Yoerger [Ref. 9]. On that paper, the control system for these thrusters was also discussed. But in this study, these thruster force and moments were assumed as some constant parameters and also no control law was developed to control them. Since the main element for grounding is the weight control, the thrusters were just used as auxillary elements of this procedure in order to increase  depth rate. By using thrusters in addition to the weight control, following changes should be done to heave and pitch rate equations,
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where Zthruster and Mthruster are thruster force and thruster moment  respectively.
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Figure 3-2. Horizontal and Vertical Thrusters of NPS Phoenix AUV

[image: image207.wmf]
Figure 3-3. Vertical Thrusters and Thruster Shrouds of NPS Phoenix AUV

V. RESULTS AND DISCUSSION

A. INTRODUCTION
In previous chapters, the mathematical models of the control system were developed. To prove the validity of the flight and weight controllers, the system was simulated by using the parameters of NPS Phoenix AUV. These parameters are presented in Appendix B. First the AUV was  controlled by flight controller (sliding mode control) during its diving from surface to a commanded flight depth. Second, the flight controller and the different cases of weight controller were simulated on the vehicle.

B. FLIGHT CONTROL
In the NPS Phoenix vehicle , there are four vertical control planes powered by servo motors. Using the definitions in Chapter II and Chapter III with the parameters of NPS Phoenix AUV and a nominal speed of 4 ft/sec, A and B matrices becomes
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By choosing the poles as p = [-2, -2.1, -2.2, 0],  the vector k was calculated,

   k = place(A,B, [-2, -2.1, -2.2, 0])


     (5.2)

           k = [-18.3998 , -2.4217 , -15.6369 ,  0]


     (5.3)

AC is calculated from

     AC = A – Bk




     (5.4)
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The eigenvector of  ATC for the pole at the origin is the sliding surface

         s = [-0.8733 ; -0.0272 ; -0.4692 ; 0.1287]


     (5.6)

as a result with 
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The motion of the vehicle is restricted to the vertical plane. The motion profiles for depth and pitch have been specified using sliding mode control. For the maneuver, the commanded depth was 4 ft and the vehicle was originally at the surface. As can be seen from the Figure 5-1, during the flight, maximum pitch angle becomes 0.042 rad (~ 2.5 degrees). When the vehicle reaches to the commanded depth as seen in Figure 5-2, the pitch angle becomes zero as expected . The controller produces the dive plane angle command according to the depth error. In the beginning the depth error is large, so the system produces higher values of plane angle command in order to eliminate this error. With the full state feedback, the vehicle responded very well to these commands. 

C.  
ADDING WEIGHT TO BOTH TANKS WITHOUT CONTROL

After completion of the flight to the commanded depth, the vehicle  gets water to both tanks in order to become heavy. Figure 5-3 shows the weight increase in the tanks. During grounding, the planes kept at zero degrees as depicted in Figure 5-4. To keep depth rate within limits, the maximum weight pumped in was limited at 5 lb for each tank. With this additional weight, the vehicle sat on the ground (10 ft.) with 0.6 ft/sec depth rate. Eventhough the weight was added proportionally (
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) to get zero momentum effect, there is still some momentum because of the vehicle itself. This momentum was created by the pitch and heave motion of the vehicle. As a result, the pitch angle increases since there is no control on either depth rate or pitch angle. As seen on Figure 5-5 and Figure 5-6, at the end of a 6 ft. drop, the pitch angle becomes 0.6 rad. (35 degrees). This method can be used for very short grounding depths (2-3 ft), but for other cases, it is not recommended since the system is completely unstable.  
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Figure 5-1. Pitch Angle Plot During The Flight
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Figure 5-2. Depth Change As A Function Of Time During The Flight.
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Figure 5-3. Weight Addition During Grounding With No Control On Flow Rates
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Figure 5-4. Plane Angle During Flight And Grounding
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Figure 5-5. Depth Change During The Flight And Grounding
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Figure 5-6. Pitch Angle Change For Flight And Grounding

D.  
WEIGHT CONTROL WITH LINEAR QUADRATIC REGULATOR


In order to keep the depth rate and pitch angle within limits, the linear quadratic regulator technique was used in designing a weight control. The mathematical model for this control system was previously explained in Chapter III. The parameters of NPS Phoenix vehicle was used for simulation. With these known parameters and 0.1 ft/sec forward velocity, A and B matrices become, 
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      (5.8)

In practice, high values of pitch angle (> 15 degrees) are not desired for a safe and stable grounding of the vehicle. So the designed control law should not tolerate too much oscillations of pitch angle. This kind of control law can be provided by choosing larger elements of Q for pitch angle compared with the others. So, Q and R matrices were chosen as follows:
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   (5.10)

By using lqr command in Matlab, control gain matrix K can be obtained,

          [K,s,m]=lqr(A,B,Q,R)



   (5.11)

and with the numbers provided ,
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   (5.12)

Since grounding to the ocean floor from a certain depth desired, the command matrix should be xcom = [0 0 0 zgr 0 0]’ where zgr = (ground depth) - (the depth where grounding is started). So the control law becomes ,

     U = -Kxerror




   (5.13)

where

    xerror = x - xcom



   (5.14)


The simulation  of the system with this control law can be seen in Figure 5-7 through Figure 5-14.

Positive flow rate represents water inlet to the balast tanks, and negative flow represents the opposite. The pumps are not allowed to pump out when there is no water in balast tanks. Figure 5-7 and Figure 5-8 show when the weight in a balast tank and the pump flow rate become zero. This is provided by a simple controller which compares the weight in ballast tank ((w) and flow rate (f). If (w is equal to zero and flow rate is a negative number, than the control input (f) of that pump becomes zero.

At the commanded depth, the speed control unit slows down the vehicle to an almost zero forward velocity (u = 0.1 ft/sec). The speed control unit’s other duty is to control the longitudinal position. During the flight, the speed control unit compares the vehicle’s location (x) with commanded location (xcom) which is a longitutional distance from the original position. When the vehicle is at the commanded depth of flight, a deceleration procedure starts. A simple algorithm was used to calculate the minimum distance needed for deccaleration to reach the commanded location at the end of the grounding. The change of forward velocity due to the depth change can be seen in the Figure 5-13. 

The depth rate  as seen in Figure 5-11 is very low in this method because of the command given to the weight control. The weight control produces its control values due to the errors which are the differences between the commanded and the actual states. In the above case,  only  the depth (z) command has a value, the commands for other states are zero. At the end of the simuation, the pitch angle becomes almost zero  as seen in Figure 5-12. In the first half of the grounding, Figure 5-9 and Figure 5-10 shows an increase in weight for both tanks, but in the second half, the system tries to make the vehicle neutrally buoyant as expected.

E.
LQR WITH POSITIVE WEIGHT COMMAND

So when the vehicle reaches the ground, there will be almost no water in balast tanks. But for the stability of the grounding, the vehicle should be heavier. For this reason, in addition to the depth command, the weight can also be commanded to increase the depth rate or the weight of the vehicle at the end of the grounding. So,  the command vector, xcom is changed to ,

  xcom = [0 , 0 , 0 , zground , (wcom1  , (wcom2]’

   (5.15)

where (wcom  are some positive numbers and represent the command for additional weight and the system was simulated with these new parameters. Figure 5-15 through Figure 5-20 show the plot of this simulation. In this case, pitch angle reaches a maximum value of 0.18 rad (10.31 degrees) which is 4 times greater than the previous simulation. With increasing pitch angle, there is also an increase in the depth rate. The depth rate becomes 0.35 ft/sec which is again almost 4 times greater than the previous simulation. Since the commanded depth for the control law is the depth of the ground, the system tries to make the vehicle neutrally stable to keep the vehicle on that depth by pumping water out of balast tanks. After grounding, pumps should pump water in balast tanks until they are full. Because this additional weight is needed to keep the vehicle sitting on the ground against the current.


Another method for increasing the depth rate is to command with a depth value which is  greater than the actual ground depth. Because in the beginning the error will be higher, the weight controller will produce higher values of flow rate.
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Figure 5-7. Flow Rate As A Function Of Time For Pump-1 With Depth Command Only
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Figure 5-8. Flow Rate As A Function Of Time For Pump-2 With Depth Command Only
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Figure 5-9. Weight Change In Ballast Tank-1 With Depth Command Only
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Figure 5-10. Weight Change In Ballast Tank-2 With Depth Command Only
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Figure 5-11. Depth Change During Flight And Grounding
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Figure 5-12. Pitch Angle Change With Depth Command Only
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Figure 5-13. Comparison Of Depth And Forward Velocity Change
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Figure 5-14. Response Of The Vehicle To The Longitudinal Position Command
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Figure 5-15. Flow Rate For Pump-1 With Weight And Depth Commands
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Figure 5-16. Flow Rate For Pump-2 With Weight And Depth Commands
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Figure 5-17. Weight Change In Ballast Tank-1 With Depth And Weight Commands
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Figure 5-18. Weight Change In Ballast Tank-2 With Depth And Weight Commands
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Figure 5-19. Depth Change With Weight And Depth Commands
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Figure 5-20. Pitch Angle As A Function Of Time With Weight And Depth Commands

F.
GROUNDING WITH THRUSTERS IN ADDITION TO WEIGHT CONTROL

             NPS Phoenix AUV’s cross-body thrusters consist of a 3 in. ID aluminum tube with a centrally located 4 blade brass propeller. A spur gear is mounted around a 3 in. diameter propeller and driven by a pinion connected to a 24 Vdc motor giving a 2.5:1 gear reduction. The twist of the propeller blade is symmetric enabling bi-directional operation delivering approximately 1.0 pound of  bollard pull force in either direction [Ref. 11]. The system was simulated with the new state equations described in Chapter III and the same weight control conditions  defined in section C of this chapter. Figure 5-21 through Figure 5-26  show the result of this simulation. The depth rate becomes 0.5 ft/sec and the pitch angle reaches a higher value since there is no control on thrusters. Because the thrusters are dominant in this case, the weight controller losses most of its effect on pitch control.

G.        BOTTOM STABILITY

The ground also affects the vehicle closing to the bottom. The theory explained by Hoerner and Borst [Ref. 12], predicts that roughly below CL =1.5 (CL represents lift coefficient), lift will be increased in proximity of the ground. Eventhough no experimental data is provided for NPS Phoenix AUV, it can be assumed that lift coefficient will be less than 1.5. For study of the bottom stability, two different cases of grounding were considered. Figure 5-27 shows these two cases.

In the case that the vehicle’s stern touched to the bottom first, the lift will decrease the weight and inrease the angle of attack. This reduces the stability and makes grounding more difficult. But this feature can be very helpful when leaving the ground. In the other case, the bow of the vehicle touches the ground first. This time lift makes the vehicle heavier and decreases the angle of attack providing more stable grounding. After the completion of grounding process, the vehicle sits on the bottom with no lift since the lift coefficient, CL is assumed zero because of the symmetric shape of the NPS Phoenix AUV. Figure 5-28 shows the ocean current that the vehicle can stand  with different ballast weights sitting on soil with 0.7 friction coefficient. When both ballast tanks are filled with water completely (~23.4 lb water in each tank), the vehicle can keep its position against 1.52 m/sec (~3 knots) of current.
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Figure 5-21. Flow Rate For Pump-1 With Thrusters And Weight Control
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Figure 5-22. Flow Rate For Pump-2 With Thrusters And Weight Control
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Figure 5-23. Weight Change In Ballast Tank-1 With Thrusters And Weight Control
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Figure 5-24. Weight Change In Ballast Tank-2 With Thrusters And Weight Control
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Figure 5-25. Pitch Angle As A Function Of Time With Thrusters And Weight Control
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Figure 5-26. Depth Change During Flight And Grounding With Thrusters And Wt. Cont.
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Figure 5-27. Forces Acting On The Vehicle In Two Cases Of Grounding
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Figure 5-28. The Current That Vehicle Can Keep Its Position
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