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Abstract

Time-driven Key Sequencing (TKS) is a key management
technique that synchronizes the session key used by a set
of communicating principals based on time of day. This
relatively low cost method of session key synchronization
has been used in specialized distributed systems where ses-
sions are sparse and each session spans a short time period
comprising a small number of messages. Typically, in these
systems some communicating devices, like low-end smart
cards, have too little processing capacity to support a time-
durable crypto-algorithm which features a static key for all
sessions or a scheme that regularly distributes a new session
key through open communication channels.

In this paper, we describe how TKS may be useful in
several scenarios involving high speed computer networks.
TKS may prove beneficial for some applications even though
the processing capacity of individual components appears
not to be a limitation. More importantly, we present a per-
formance model of TKS and conduct a detailed analysis to
determine the impact of clock drift and network latency on
the required key refresh rate. We give the exact conditions
for determining the range of adequate key refresh rates,
and demonstrate that the derived conditions are sufficient
to ensure that data are both protected and deliverable. In-
terestingly, these conditions may be used to obtain a key
refresh rate that can tolerate a maximum amount of clock
drift after other parameters in the system are fixed.

1 Introduction

Time-driven Key Sequencing (TKS) is a key manage-
ment technique that synchronizes the session key used
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by a set of communicating devices based on time of
day. The sequence of session keys is either dynami-
cally generated from a root key or preloaded into each
device. This relatively low cost method of session key
establishment has been used in specialized distributed
systems where sessions are sparse and each session
spans a short time period comprising a small num-
ber of message exchanges. Typically, in these systems
some communicating devices, such as low-end smart
cards, have too little processing capacity to support a
time-durable crypto-algorithm which features a static
key for all sessions spanning the entire system lifetime.
Nor can these devices afford an elaborate key manage-
ment scheme in which a new session key is regularly
distributed to the devices through open communication
channels. This is because the key transfers must be
encrypted and the associated tasks would impose a sig-
nificant amount of processing overhead at each device.

Compared to most other key synchronization tech-
niques, TKS has a clear advantage for incurring little
processing overhead. TKS also has several limitations.
It requires some form of system wide clock synchro-
nization to bound the maximum clock drift within a
tolerable range. Additional overhead may be incurred
in other parts of the system to address the security
concerns associated with dynamically generating or
preloading a sequence of keys. Fortunately, most of
this overhead occurs very infrequently on the order
of days or months. Also, a system may use TKS to
synchronize encryption keysonly if each piece of data
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being encrypted has a lifespan that is shorter than the
maximum lifetime1 of the key used for the encryption.

A widely used TKS application is the SecureID au-
thentication device produced by RSA Security, Inc.
These devices are used to enhance the security of re-
mote dial-up accesses to corporate servers. Most of
them are essentially low-end smart cards with key-
pad and a small display area. Each SecureID card is
preloaded with user-specific root keys that it shares
with the target server. When initiating a dial-in ses-
sion, a card user first enters a user-specific pin code
into the card and retrieves a one-time passcode, which
is a function of the user’s root key and the current value
of the card’s local clock. The function is implemented
by a proprietary hash algorithm. The user then pro-
vides this passcode as an additional authenticator to
the server along with the pin. To verify the passcode
the server first derives its own version of the passcode
from the current value of its own clock and the root
key that it has stored for that user. The server then
compares the two codes and grants the dial-in session
only if they match.

Although TKS-based security applications like Se-
cureID are widely deployed, performance studies of
these systems are very limited. The few articles that
we are able to find in the literature focus exclusively
on the potential security risks of RSA SecureID based
systems [13, 12]. Little analysis has been done to
quantify the adverse effects of clock drift and network
latency on the performance of systems implementing
TKS. These systems assume the time scale of clock
drift and network latency is several magnitude smaller
than the rekeying interval and is thus negligible. Be-
cause of this assumption, the key refresh rate is often
set in an ad hoc fashion and may not be optimal.

The main contribution of this paper is a set of exact
conditions for determining the range of adequate key
refresh rates based on clock drift and network latency
parameters. We prove that the derived conditions are
sufficient for the corresponding TKS system to ensure

1The maximum lifetime of a key equals the minimum amount
of time it takes to compromise the key using brute-force.

that data are both protected and deliverable. Interest-
ingly, these conditions may be used to obtain a key
refresh rate that can tolerate a maximum amount of
clock drift after other parameters in the system are
fixed. The result also indicates that in general TKS
can tolerate large clock drift, on the order of minutes.

We also describe how TKS may be useful in several
scenarios involving high speed computer networks.
TKS may prove advantageous for some applications
even though the processing capacity of individual com-
ponents appears not to be a limitation for implement-
ing time-durable cryptographic algorithms. In these
scenarios, it may be desirable to have a high rate of
rekeying that is on the order of minutes and thus ap-
proaches the time scale of clock error and network
latency. That is where determining a safe rekeying rate
becomes a very important concern.

The remainder of this paper is organized as fol-
lows. In Section 2 we describe a couple of network-
ing scenarios in which TKS may be favorable. A
system model is presented in Section 3 to provide a
high-level context for TKS. The performance measures
used in this paper are introduced too. In Section 4,
a canonical TKS implementation is described, along
with intuitions for the negative effects of clock drift
and network latency. Section 5 follows with a formal
analysis of TKS and two theorems that permit us to
bound the rekeying frequency based upon network la-
tency, clock drift, and key durability. In Section 6, a
method for choosing the optimal rekeying frequency
based on system requirements is presented. Related
work is discussed in Section 7. The paper concludes in
Section 8 with a summary and suggestions for future
research.

2 Potential TKS Usage Scenarios

In this section, two potential scenarios in which time-
driven key sequencing may prove advantageous are
described. The first requires a high speed packet au-
thentication service to counter Denial of Service (DoS)
attacks, while the second requires message confiden-
tiality for data that has a short lifespan.
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We define “cryptographic mechanism” to include
specific selections for all variable parameters, includ-
ing, where applicable, the transformation algorithm
(including the number of internal “rounds” or permu-
tations), blocksize, and the length of the key. The
security or “cryptographic strength” of such a mech-
anism can be taken to be a measure of its resistance
to attack, and may be a function of some or all of
these parameters. Similarly, the specific parameters
of a cryptographic mechanism will determine its level
of resource use, or overhead. Processor utilization is
the most critical overhead. In general the stronger is a
cryptographic mechanism, the more processing over-
head it incurs.

For example, the performance of the Advanced En-
cryption Standard (AES) algorithm (Rijndael)[7], is
functionally dependent on the size of the key used.
Both setup and encryption take longer as the key length
increases. The Twofish [14] algorithm, also has an in-
creased setup time as key length increases. As another
example, the performance of HMAC [11] is indepen-
dent of key length, but naturally depends upon the
performance of the function used to produce the hash.
Hash functions present considerable variation. Assem-
bly language implementations of various algorithms
have hashing speeds ranging from 190.6 Mbits/sec for
MD4 to 45.3 Mbits/sec for RIPEMD-160 on a 90 MHz
Pentium [4, 3]. MD5 and SHA-1 performances are
136.2 Mbits/sec and 54.9 Mbits/sec respectively.

Scenario 1. The Internet routing protocols such
as IS-IS, OSPF and BGP frequently flood the network
with link state or path update packets to keep rout-
ing tables synchronized and up to date. In each of
these update cycles, a router must process a large num-
ber of control packets sent by numerous other routers.
Worse, these packets typically arrive in bunches, creat-
ing “packet storms” that could overload the receiving
routers. The problem will be exacerbated when various
proposals for achieving subsecond route convergences
are implemented [1, 2].

An adversary will explore this problem and launch
DoS attacks against these protocols rather easily as fol-
lows. The adversary identifies those routers already

busy processing control packets and then aggravates
their predicament by sending a large number of faked
or duplicated control packets to them. Such attacks
will delay routing table convergence and disrupt net-
work services.

An effective measure to counter these DoS attacks
is deploying to each router interface a packet filter
to form a first-line defense. Malicious packets are
dropped early and rapidly before they enter the more
processing-intensive stages. The main design objec-
tive for the filter is “minimal processing overhead”, as
long as security is not compromised. Although the ex-
isting security extensions of the Internet routing proto-
cols can detect malicious packets, they do not meet the
requirement of minimum processing overhead. Their
main objective is “adequate security”. TKS, on the
other hand, provides an ideal basis for developing the
packet filter. By increasing the rekeying frequency,
the system may use a “weak-per-key” but lightweight
cryptographic mechanism like keyed-MD5 to achieve
the same filtering accuracy (i.e., 100% drop rate of
malicious packets) as a strong but costly mechanism
based on public key cryptography.

We have developed such a filter as part of our effort
to build a link-layer high speed packet authentication
protocol [16]. Running as part of the NetBSD kernel
on an antiquated Pentium 200Mhz PC box, the filter
was still able to achieve a filtering rate of 75 Mbps.

Scenario 2. This scenario centers upon confiden-
tiality. Use of rapidly changing keys would be useful in
situations where time-critical data are distributed in en-
crypted form to a group of subscribing customers. As
an example, consider time-critical analyses of highly
volatile financial markets. Here subscribers are pro-
vided with timely multi-media analyses to support in-
formed investment decisions in a fast-paced market.
The analyses are of considerable value for a few hours,
but are available to the public after a fixed period
and provide no added value to subscribers thereafter.
Subscribers receive continuous updates and analyses.
They may join and leave the subscriber pool periodi-
cally, for example monthly, thus we are not concerned
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with rapid rekeying in order to include or exclude par-
ticular subscribers or former subscribers respectively.
We are, however concerned with attackers who wish
to access the valuable sensitive information for free.
Because attackers will be able use both known cipher-
text and known plaintext, it is necessary to change the
keys while subscribers are actively using the service.
Yet, the fact that the information is no longer sensitive
after a few hours means that the cryptographic mecha-
nism used needs only to be sufficiently strong to pro-
tect the information for these relatively small intervals.
Again, security related processing overhead is reduced
by using the right, not necessarily the strongest, cryp-
tographic mechanism.

Numerous group management issues must be ad-
dressed to implement a fully functional version of the
scenario described above. These are beyond the scope
of this paper, which focuses on key synchronization
between the senders and receivers.

In both scenarios, it may be beneficial to use a high
rekeying frequency. But because of non-negligible
clock drift and network latency in real systems, there is
an upper bound on the maximum rekeying frequency.
On the other hand, the minimum rekeying frequency
is directly related to the maximum key lifetime. The
remainder of the paper is dedicated to these topics.

3 A System Model of TKS

While TKS is applicable to different types of network
communication protocols, for ease of presentation we
assume a packet-based (e.g., IP) network. The fol-
lowing definitions applys to the System Model used
to discuss TKS in this paper.

• System. A set of communicating nodes, one or
more of which comprise a logical (viz, poten-
tially distributed) key distribution center (KDC).
(See Figure 1.) Nodes wish to communicate se-
curely through the shared use of a cryptographic
key table. The nodes can be of various types rang-
ing from powerful workstations and gateways to
lighter-weight appliances. Therefore, the TKS

Inter-Network

kdc TKS  Nodes

Figure 1: System model.

processing requirement at the node should be
minimized. One may also interpret a node as a
logical entity such as a user account or even an
application activated on a physical machine.

• Maximum Key Lifetime,T . Each cryptographic
key used in theSystem is subject to various at-
tacks as soon as the first packet secured with the
key enters the public network. The amount of
time that the key can remain concealed while un-
der attack is defined to be themaximum lifetime
of the key.

• Key-Table. An ordered set of session keys. The
same table must be available at each node of the
system. These keys Key table distribution can be
accomplished by several means. One method is
to transmit “seed” keys (e.g., see [5]) which are
used by the nodes as part of an algorithm for lo-
cal generation of the complete key table. Another
means is to distribute the literal keys that make
up the key table. Literal keys, to the extent that
they are generated “randomly,” will exhibit more
inter-key independence, as algorithmically gener-
ated keys will be related to each other, however
remotely, via the algorithm.

For the purposes of this paper, the key-table has
an infinite size; this is understood as reflecting an
implementation mechanism which replenishes all
nodes with additional sequence of keys before the
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expiration of the last key in the current sequence,
thus infinitely extending the length of the table.

• Time-driven Key Sequencing, TKS. In a sys-
tem utilizing shared logical key tables, TKS is
a method for synchronizing the transition be-
tween keys without utilizing explicit node-to-
node handshaking.

Threat model

The threat model assumed in this paper is one of
insecure communication channels between System
nodes, such that cryptographically protected data pack-
ets might be intercepted and then subjected to at-
tacks on the key space. We donot consider with
attacks aimed at directly compromising the underly-
ing hardware and/or software of a node. We assume
that the prefetched keys (or their seeds, in the case
of algorithmically-generated keys) are stored and dis-
tributed securely.

Performance measures

We are primarily concerned with two performance
measures. The first one is a Boolean indicator ofse-
curity. Specifically, the described System is said to
be secure if keys are not used beyond their maximum
lifetime at any node, per the TKS protocol, even in the
context of an insecure communication channel. A for-
mal definition is given in Definition 1 of Section 5.

If a key is used beyond its maximum lifetime, the
system may be vulnerable to an attack as illustrated in
Figure 2. An intruder who intercepts packets from the
message stream of a trusted node can use cryptanaly-
sis techniques or a search of the key space to discover
the key, and then hijack the message stream. The re-
ceiver node will not be able to detect this intrusion just
by inspecting the messages since the intruder is able to
modify all packet fields (including any timestamp or
sequence number) after learning the key. Because of
such attacks, it is also not advisable to synchronize ses-
sion keys with a limited maximum lifetime by adding
a key index field to packets.

t0 t1 t2 t3 t4

Packets signed with K
start to enter network
at t0

...

...

Intruder hijacks packets
at t1

(key lifetime)
T

Intruder breaks key
at > + T

...

Intruder inserts intruding
packets signed with K
at t3

...

Node accepts 
intruding packets

Time

t2 t1

Figure 2: Illustration of brute-force attack

The second performance measure is aboutdata de-
livery. It describes the efficacy of the TKS system in
delivering useful data while trying to meet the security
requirement. The specific metric we use is calledmax-
imum tolerable network latency, denoted byD and a
performance target that can be seta priori. A TKS
system is said to support maximum tolerable network
latency ofD seconds if a TKS node will never drop a
valid packet — one that comes from another TKS node
and is not tempered with in transit — unless the packet
is delayed more thanD seconds by the network. A for-
mal data deliverability condition is defined in Lemma
1 of Section 5.

4 Implementing TKS with
Dynamic Key Windows

In this section, the general behavior of a TKS system is
described using a reference implementation in which
each node stores active session keys in special vari-
ables nameddynamic key windows. The implementa-
tion is referred to as TKS-DW. We hope the ensuing
discussions will also provide some intuitive explana-
tions for the adverse effects of clock drift and network
latency.

Recall that a logical key table is defined for each
node to represent the sequence of session keys used by
that node over time. The keys may actually be dynam-
ically generated on-demand from a “seed” key.
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In TKS-DW, each node maintains two dynamic key
windows. The first is theSend-Key Window, which is
of size 1. The node uses the session key in this win-
dow to cryptographically transform outgoing packets.
A special term (s) is designated for the time when a
key is first put into the send-key window. The duration
of a key staying in the send-key window is fixed and
is called theKey Window Period, W . An obvious con-
straint needed onW is that it be less than or equal to
the cryptographic lifetime of one key. At the end of the
current key window period, aSend-Key Window Tran-
sition occurs and a new key is put into the send-key
window.

We will motivate the need for aReceive-Key Win-
dowand then give its precise definition. The effect of
clock drift is considered first and for the moment net-
work latency is assumed to be negligible.

In a perfect network where the local clocks of all of
the nodes are exactly synchronized, all nodes would
make send-key window transitions at precisely the
same time. All senders and receivers would see the
same key in their respective send-key windows.

Perfect clock synchronization does not exist in real
networks. If a receiver’s clock is slow with respect
to that of a sender, then a current key of the sender
will appear to be either a current key or a future key
to the receiver. Similarly, a current key of a sender
will be either a previous key or the current key of a
receiver with a relatively fast clock. What is of interest
to note is that between any particular sender-receiver
pair, a key will either be a previous/current key or a
current/next key at the receiver, not both. This means
that, for a particular sender-receiver pair, a key will be
active for a duration equal to a variable number,n, of
Key Window Periods, i.e.,nW .

Because the clock of a given receiver may be slow
with respect to some senders and fast with respect to
others, the receiver must maintain a receive-key win-
dow that encompasses both previous, current, and fu-
ture send-keys. Thus theReceive-Key Windowdefines
a set of one or more keys that a node uses to crypto-
graphically transform (e.g., validate) incoming pack-
ets. The window also has a finite period ofW . In

ki

i-1k

i+1k

i+2k

...

Key table

...

(b)

s+2W

Key table

...

i-1k

i+1k

...

ki

(a)

s+W

(c)

s+3W

ki

i-1k

i+1k

i+2k

i+3k

Time

...

s

Send 
key window

Receive 
key window

ki

i-1k

i+1k

...

...

ki-2

Key table Key table

...

s-W

Figure 3: Key windows of a node at different time in-
tervals

other words, one key in the window is replaced every
W time.

The receive-key window has the following generic
positions:

• x previous send-keys

• 1 current send-key

• y next send-keys

We wish to minimize the number of keys that must be
inspected upon receipt of a packet. In what follows, the
size of the receive-key window is assumed to be 3 (i.e.,
x = y = 1). This assumption places limitations on the
allowed clock drift, which will be explained below.

As a key window period expires, aReceive-Window
Transition takes place and the receive-key window
“slides” down the key table in the following manner.
The key in each position of the receive key window is
replaced by its “next” neighbor, such that in the sub-
sequent receive-key window, (1) the current key has
become the newest previous key, (2) the oldest next
key has become the current key, (3) a new key has
entered the table (as the newest next key) and (4) the
oldest previous key has left the table.

Figure 3 illustrates how key windows move with
time at a node.s denotes the time whenki, the key
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at theith row of the table, becomes the current send-
ing key. Recall thatW is theKey Window Period. In
time interval (a),ki is the current sending key and it is
in the receive key window along withki−1 andki+1.
At the end of the interval, i.e., exactly2 s + W , the
node slides the key windows down one row of the ta-
ble. The node has now entered window interval (b) and
ki is the previous key. The node then slides the key
windows one more row at times + 2W . At this point
the node has entered window interval (c) andki is no
longer in the receive-key window. Observe that with
perfect clock synchronization, a key stays in receive-
key window for two consecutive window periods after
becoming the send key and subject to attack. In that
case, the key lifetime must be greater than2W to en-
sure security.

Suppose the clock drift of each node is bounded
with respect to a standard time source by a valuee.
The maximum clock time that two nodes can drift apart
with respect to each other is2e. Thus the receive-key
window period must be extended by2e to ensure data
delivery in the worst-case, which occurs for a (fast
sender, slow receiver) pair. Consequently, the lower
bound on key lifetime must be increased from2W to
2W + 2e.

What are the consequences of network latency? The
time that it takes a packetp to get from source to desti-
nation is called thenetwork latency ofp and is denoted
d(p). This means that the key window periodW must
be at least as large asd(p) to have a chance to not drop
p mistakenly. When also taking into consideration a
maximum of clock drift2e between the sender and re-
ceiver,W must be at leastD + 2e to not drop packets
whose network latency can be as large asD.

5 Exact conditions for using TKS

In the last section, we presented intuition that there
are exact limits on the key window periodW (and

2For ease of presentation, we assume that the node useski as
the sending key ats + W and switches toki+1 at (s + W )+.

thus the rekeying frequency) with respect to the max-
imum key lifetime, clock drift, and network latency.
In this section, we formally establish that these limits
are sufficient to ensure that data is both protected and
deliverable under TKS-DW with the receive-key win-
dow size set to three keys.3 The security objective of
TKS-DW is formally defined below.

Definition 1 Assume that the maximum lifetime of
each key isT seconds measured by standard time. The
protocol is not vulnerable to brute-force attacks if it
never uses a key beyond the maximum key lifetime; that
is, the protocol is not vulnerable if the following holds
for any keyk that it uses,

tl(k)− tf (k) ≤ T, (1)

wheretf (k) is the standard time when the first packet
secured withk enters the public network, andtl(k) the
last standard time thatk is in a receive-key window at
any node.

Equation (1) tells us that the protocol is secure when
the keys are used within the time bounds of their de-
fined lifetimes, given standardized (i.e., perfectly syn-
chronized) clocks at all nodes. However, in reality, the
clocks at local nodes may deviate from standard time.
Theorem 1 presents an condition under which we can
guarantee that the protocol is secure using local, non-
standard, clocks.

Assumption 1 Each node has a local clock. A mech-
anism is in place to synchronize these clocks with the
standard time so that at any time the absolute differ-
ence between any local clock and the standard time is
upper bounded bye seconds. That is, at any standard
timet and for any noden in the TKS system,

| cn(t)− t |≤ e, (2)

wherecn denotes the local clock ofn, and cn(t) the
reading on that clock at standard timet.

3The results can be extended to arbitrarily large receive-key
window sizes.
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Theorem 1 (Condition for Security)
Consider a TKS-DW system. LetW be the key window
period. Assume that the maximum lifetime of each key
is T seconds. If the following security conditionholds

W ≤ T
2
− e, (3)

then for every keyk used by the system,

tl(k)− tf (k) ≤ T. (4)

The proof of Theorem 1 is straightforward based on
the intuition given in the end of previous section. (See
Appendix.) Combining the results of Definition 1 and
Theorem 1, it is clear that a TKS-DW system is se-
cure if it meets the condition specified by equation (3).
Thus, we have derived a condition for TKS-DW to en-
sure security.

Next, we turn attention to the adverse effect of net-
work latency on packet delivery. The network latency
of a packet is measured as the difference between the
standard time when the packet leaves the sending node
and the standard time when the packet arrives at the
receiving node. Given a specific maximum tolerable
network latency targetD, Theorem 2 establishes the
importance of choosingW based onD to ensure that
data are deliverable.

Lemma 1 Consider an arbitrary packetp secured by
a TKS sender. Letk be the key that secures the packet.
a(p) denotes the standard time when the packet arrives
to the receiving node, andtpl (k) the last standard time
that k is in the receive-key window of the receiving
node ofp. If the packet has not been tempered with,
and

tpl (k)− 3W ≤ a(p) ≤ tpl (k), (5)

then the packet will be accepted by the receiving node.

Theorem 2 (Condition for Data Deliverability)
If W meets the following data deliverability condition

W ≥ D + 2e, (6)

then for any packetp whose network latency (denoted
byd(p)) does not exceedD,

tpl (k)− 3W ≤ a(p) ≤ tpl (k). (7)

Lemma 1 follows directly from the proto-
col specification of TKS-DW and the fact that
(tpl (k)− 3W,≤ tpl (k)] is the receive-key period of
k at the receiving node. The proof of Theorem is
straightforward based on the intuition given in the end
of previous section. (See Appendix.) Combining the
results of Lemma 1 and Theorem 2, it is clear that
if the condition specified by (6) holds, then a valid
packet, i.e., one that is secured by a TKS sender and
is not tempered with in transit, will be accepted by
the receiver as long as its network latency does not
exceedD. Thus, we have determined a condition on
TKS-DW to ensure deliverability of data.

6 Practical Uses of the Conditions

We see several practical uses of the theoretical results
presented in the previous section. They are described
below.

6.1 Choosing W to maximize tolerance of
clock drift

Assume that the key lifetimeT and the maximum
network latency toleranceD have already been deter-
mined based on system needs. Next we will discuss the
relationship between the key window periodW and
the maximum tolerable clock drifte. We will show
that there exists aW value that maximizes allowable
e. That is,givenT andD one can choose a particular
key window period to maximize the system’s clock drift
tolerance. Although a time synchronization protocol
such as the Internet Network Time Protocol (NTP) can
be used to reducee to tens of milliseconds, it is still de-
sirable to maximize the system’s clock drift tolerance
because the NTP could be under attack itself or mal-
function, in which casee would be much higher than
normal.

From the security and deliverability conditions of
Theorem 1 and 2, the following upper bound one can
also be established

e ≤ min{W −D
2

,
T
2
−W} (8)
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D

e
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(T + D) / 3

(T
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 2
D

) 
/ 6

e = T/2 - W

e = (W - D) / 2

Figure 4: Relationship betweene andW

Now we have a range ofe to choose from based onW .
If the value ofW is set too close toT/2 or D, then
from equation (8)e is required to be very small, which
may be infeasible.

TheW value that maximizese can be derived based
on equation (8) as follows. Figure 4 shows thee-W
relationship embedded in equation (8). There is a fea-
sible region, the shaded triangle of the figure, of(e,W )
combinations that meet both security and deliverability

conditions. Within that region, whenW =
T + D

3
, e

is maximized at
T − 2D

6
.

As an example, letD = 30 seconds, which is much
larger than the normal network latency in the Inter-
net. Furthermore, letT = 1800 seconds, which is
a conservative estimate for current cryptograhic sys-
tems. If clock drift is the principal concern, one
should choose a key window period that is close to
(1800+30)

3 = 610 seconds so that a maximum clock

drift of (1800−2×30)
6 = 290 seconds can be tolerated.

6.2 DeterminingD and e

When selecting a value for the maximum network la-
tency toleranceD one should consider how the appli-
cation reacts to packet delays. For example, it would
be ok to setD to a very small value (i.e., subsecond) if
the system is to just carry live voice traffic. Overly

delayed packets are useless to this type of applica-
tions. Similarly for typical Internet Web applications,
the value ofD can be in the range of seconds.

It would be prudent to make a conservative estimate
on maximum clock drifte. Several existing time syn-
chronization protocols can bound the clock drift within
a second. Global Positioning System (GPS) satellite
based clocks may reducee further to the order of 1-2
microseconds. However, these performance numbers
are achieved in normal operating situations. The time
synchronization protocols or GPS satellites may mal-
function or be under attack. Therefore, it is important
to select ane value that is sufficiently large to account
for extra clock errors caused by unusual system condi-
tions.

Our analysis suggests that the security of a TKS
system will not be compromised by an overestimated
e or an improperly setD value. This is because the
security condition is independent ofD and a larger
e value causes keys to be refreshed more frequently.
On the other hand, the data delivery performance of
the system may be significantly impacted by these val-
ues. Other factors such as rekeying overhead need to
be considered too in determining the rightD ande val-
ues for a system. (See sections below.)

6.3 ChoosingW based onD, e, and T

After T , D ande are determined, a range ofW values
may be feasible. Based on the security and deliverabil-
ity conditions, specifically equations (3) and (6), the
window periodW can be selected from the following
range

D + 2e ≤ W ≤ T
2
− e (9)

For example, letD = 20 seconds,e = 20 seconds, and
T = 1800 seconds. ThenW can be any value between
60 and 880 seconds.

The value ofW determines how often a new key is
needed. When there is a range of values to select from,
W should be as large as possible. The main advantage
of this approach is that it minimizes the overhead of
key generation and/or distribution. The trade-off is that
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largeW requires long-lasting keys and possibly more
processing overhead associated with the transform.

6.4 Choosing the right cryptographic
mechanism

For well-designed cryptographic systems, the per
packet transform overhead typically increases with the
maximum key lifetime (T ). To reduce the overhead, it
is desirable to use a cryptographic mechanism whose
maximum key lifetime is just right for the task at hand.
After D ande are determined for the system, a lower
bound onW can be obtained based on the deliver-
ability condition, i.e., equation (6). OnceW is set, a
lower bound onT can be determined from the security
condition, i.e., equation (3). Finally, an appropriate
cryptographic algorithm may be selected based on this
lower bound on key lifetime.

For example, consider designing the packet filter de-
scribed in the usage scenario 1. letD = 20 seconds
and e = 10 seconds. From equation (6), the lower
bound onW is (20 + 2× 10) = 40 seconds. Let’s as-
sume thatW can be set to a minimum of 120 seconds
due to key generation and distribution overhead and
other concerns. Then from equation (3),T has a lower
bound of(2 × 100 + 2 × 10) = 220 seconds. This
lower bound ofT can be used to select a (transform,
key-length) pair with just the right strength.

7 Related Work

Several security risks of a particular RSA SecureID
implementation and recommended fixes are reported
in [13]. All of the problems seem to have something
to do with how the SecureID system is engineered and
operated, not the TKS concept itself. A cryptanalysis
of the RSA SecureID’s supposedly proprietary hash al-
gorithm is presented in [12].

The IPSec protocol [10] provides a framework for
managing encryption and authentication, and their as-
sociated policies, at the network (IP) level. The default
automated key management protocol for IPSec is re-
ferred to as Internet Key Exchange (IKE) [8]. Key

exchange is based on the use of the Diffie Hellman al-
gorithm, which is relatively computationally intensive.
By default, the lifetime of a IPSec session key must
at least as long as the duration of the target session.
One may avoid using a long duration key by partition-
ing the traffic of a long session into several sub-flows.
However, each of these flows requires additional set-up
overhead4 [9]. For usage scenarios described herein,
TKS would be ideal for replacing IKE or other ex-
pensive key exchange algorithms (viz, instead of using
IKE to change keys for sub-flows of a long session).

For multicast applications, Briscoe introduced a
scheme for distributing key sequences algorithmically
[5], but that scheme relies on transmitting a key-
sequence number in the clear, along with each en-
crypted data item. Since an attacker could tamper with
key sequence numbers, the approach may be vulnera-
ble to manipulation. Alternatively, he proposes that se-
quencing could be synchronized by time-of-day. This
paper provides a solution to the time-of-day synchro-
nization scenario.

The subject of dynamic change of cryptographic
keys has recently been studied for high speed ATM
networks and multicast communications. For ATM, it
has been deemed important that each “virtual channel”
have separate encryption/decryption keys. To support
this functionality, an encryption/decryption device for
ATM traffic must be key-agile, i.e., it must be able to
switch to the correct encryption/decryption keyat link
speedbased on the content (i.e., channel designation)
of the next cell or cells. Several techniques were pro-
posed for meeting this key agility requirement [6, 15].
In contrast, TKS supports dynamic key changes within
thesame“virtual channel.”

8 Concluding Remarks

We have analyzed the performance of the Time-driven
Key Sequencing protocol, which allows low-overhead,

4The idea of key prefetching for long duration flows is briefly
mentioned for IPSec. However, no details for its realization are
given.
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time-of-day-based key changes among senders and re-
ceivers who share a sequence of keys. The main result
is a pair of conditions under which the protocol can be
considered secure and reliable.

There is a limit to how much efficiency can be
gained from more frequent rekeying. At some point,
the per-key overhead of changing keys can overtake
the resource advantage of using more efficient crypto-
graphic mechanisms. Further work is needed to quan-
tify the characteristics of this effect.
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Appendix

Proof of Theorem 1

Let k be an arbitrary key used by the system. Let
(s, s + W ] be the local send-key interval ofk at each
node. Letcsend be the local clock of the first TKS node
to usek for sending. The following holds

csend(tf (k)) > s. (10)

As shown in Figure 3, the local receive-key interval of
k at each node is(s−W, s+2W ]. Letcrecv be the local
clock of the last TKS node to usek as a receive-key.
The following holds

crecv(tl(k)) = s + 2W. (11)

We wish to express these relationships in terms of stan-
dard time. From Assumption 1, we have

tf (k) ≥ csend(tf (k))− e (12)

tl(k) ≤ crecv(tl(k)) + e. (13)

Combining equations (10) and (12) and combining
equations (11) and (13), we have

tf (k) ≥ s− e, (14)

tl(k) ≤ s + 2W + e. (15)

Subtracting equation (14) from equation (15), we have

tl(k)− tf (k) ≤ 2W + 2e. (16)
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Rewriting equation (3), we have

2W + 2e ≤ T. (17)

Combining equations (16) and (17), we have

tl(k)− tf (k) ≤ T. (18)

2

Proof of Theorem 2

Let l(p) be the standard time of the packet’s departure
from the sending node. The following holds

a(p) = l(p) + d(p). (19)

By assumption,d(p) ≤ D. Therefore,

a(p) ≤ l(p) + D. (20)

Let k be the key the packet is secured with at the
sending node. Let(s, s + W ] be the local send-key
interval ofk at the sending node. Similar to the proof
of Theorem 1, the following holds

cp
send(l(p)) ≤ s + W (21)

cp
recv(t

p
l (k)) = s + 2W, (22)

wherecp
send andcp

recv represent the local clocks at the
sending and receiving nodes ofp respectively. From
Assumption 1,

l(p) ≤ cp
send(l(p)) + e (23)

tpl (k) ≥ cp
recv(t

p
l (k))− e. (24)

Combining the two equation arrays above, we have the
following relationships in terms of standard time

l(p) ≤ s + W + e (25)

tpl (k) ≥ s + 2W − e. (26)

Combining equations (20) and (25), we have

a(p) ≤ s + W + e + D. (27)

Subtracting equation (26) from equation (27), we have

a(p)− tpl (k) ≤ D + 2e−W. (28)

Rewriting equation (6), we have

D ≤ W − 2e. (29)

Adding equations (28) and (29), we have

a(p)− tpl (k) + D ≤ D. (30)

Therefore, we have

a(p) ≤ tpl (k). (31)

Similarly, it can be shown that

a(p) ≥ tpl (k)− 3W. (32)

Therefore

tpl (k)− 3W ≤ a(p) ≤ tpl (k). (33)
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