
2566 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

Minimum Interference Routing of Bandwidth
Guaranteed Tunnels with MPLS Traffic Engineering

Applications
Koushik Kar, Murali Kodialam, Member, IEEE, and T. V. Lakshman, Senior Member, IEEE

Abstract—This paper presents new algorithms for dynamic
routing of bandwidth guaranteed tunnels, where tunnel routing
requests arrive one by one and there is noa priori knowledge
regarding future requests. This problem is motivated by service
provider needs for fast deployment of bandwidth guaranteed
services. Offline routing algorithms cannot be used since they
require a priori knowledge of all tunnel requests that are to be
routed. Instead, on-line algorithms that handle requests arriving
one by one and that satisfy as many potential future demands as
possible are needed. The newly developed algorithms are on-line
algorithms and are based on the idea that a newly routed tunnel
must follow a route that does not “interfere too much” with a
route that may be critical to satisfy a future demand. We show
that this problem is NP-hard. We then develop path selection
heuristics which are based on the idea of deferred loading of
certain “critical” links. These critical links are identified by the
algorithm as links that, if heavily loaded, would make it impossible
to satisfy future demands between certain ingress–egress pairs.
Like min-hop routing, the presented algorithm uses link-state
information and some auxiliary capacity information for path
selection. Unlike previous algorithms, the proposed algorithm
exploits any available knowledge of the network ingress–egress
points of potential future demands, even though the demands
themselves are unknown. If all nodes are ingress–egress nodes,
the algorithm can still be used, particularly to reduce the re-
jection rate of requests between a specified subset of important
ingress–egress pairs. The algorithm performs well in comparison
to previously proposed algorithms on several metrics like the
number of rejected demands and successful rerouting of demands
upon link failure.

Index Terms—Maximum flow, MPLS, optimization, quality of
service routing, traffic engineering.

I. INTRODUCTION

WE CONSIDER the problem of setting up bandwidth
guaranteed tunnels in a network, where tunnel setup re-

quests arrive one by one and future demands are unknown. The
only dynamic information available to the tunnel routing algo-
rithms are the link residual capacities which can be obtained
from routing protocol extensions such as in [10], [13], [15]. We
also assume that quasi-static information such as the ingress–
egress nodes in the network are known. This knowledge of the

Manuscript received October 15, 1999; revised April 15, 2000.
K. Kar is with the ECE Department, University of Maryland, College Park,

Maryland, MD 20742 USA (e-mail: koushik@eng.umd.edu).
M. Kodialam and T. V. Lakshman are with Bell Labs Lucent Technologies,

Holmdel, NJ 07733 USA (e-mail: muralik@bell-labs.com; lakshman@re-
search.bell-labs.com).

Publisher Item Identifier S 0733-8716(00)09228-3.

ingress–egress nodes should be exploited to reduce the number
of request rejections due to insufficient network capacity. Even
when all nodes are ingress–egress nodes, it is likely that some
subset of ingress–egress nodes are more important, and so
tunnel requests between them will be required to have a lower
probability of being rejected. The algorithm should be able to
protect such important ingress–egress pairs.

We develop new algorithms for routing bandwidth guaran-
teed tunnels in this scenario. The problem is motivated by the
needs of service providers to quickly setup bandwidth guaran-
teed paths in their backbone or transport networks. An impor-
tant context in which these problems arise is that of dynamic
label switched path (LSP) setup in multiprotocol label switched
(MPLS) networks. For conciseness and ease of terminology, we
focus on this application in the rest of the paper, even though the
developed algorithms can be used in other networking applica-
tions requiring dynamic bandwidth provisioning.

A. MPLS

In MPLS [14], packets are encapsulated, at ingress points,
with labels that are then used to forward the packets along label
switched paths (LSPs). Service providers can use bandwidth
guaranteed LSPs as components of an IP virtual private net-
work (VPN) service, the bandwidth guarantees being used to
satisfy customer service-level agreements (SLAs). These LSPs
can be thought of as virtual traffic trunks that carry flow aggre-
gates generated by classifying the packets arriving at the edge
or ingress routers of an MPLS network into “forwarding equiv-
alence classes” (FECs) [14], [4]. The classification into FECs
is done using packet filters that examine header fields such as
sources address, destination address, type-of-service bits, etc.
The filter rules determining the FECs can be established in a
variety of ways such as by downloading from a policy or route
server, or by interacting with routing protocols. The purpose of
classifying packets into FECs is to enable the service provider
to traffic engineer the network and route each FEC in a specified
manner. This is done by mapping arriving packets belonging to
an FEC to one of the LSPs associated with the FEC.

B. Explicit Routing of LSPs for Traffic Engineering

Before mapping packets onto an LSP, the LSP is setup using
a signaling protocol such as RSVP or CR-LDP (constraint
routing label distribution protocol). A key aspect of LSPs rel-
evant to this paper is that LSPs can be explicitly routed along

0733–8716/00$10.00 © 2000 IEEE

KAR et al.: MINIMUM INTERFERENCE ROUTING OF BANDWIDTH GUARANTEED TUNNELS WITH MPLS TRAFFIC ENGINEERING APPLICATIONS 2567

specific paths. This means that when an LSP is being setup, it is
possible to specify all intermediate points between the ingress
and egress.1

This explicit (or strict) routing feature of MPLS allows the po-
tential addressing of many shortcomings associated with current
IGP routing schemes, which are hampered by the requirement of
forwarding packets based only on destination addresses (such as
shortest path routing with mostly static and traffic-characteristic
independent link metrics). A prime problem is that some links
on the shortest path between certain ingress–egress pairs may
get congested while links on possible alternate paths remain
free. Even in the best-effort model, this means that available
network resources are not being used well and there is potential
for providing better quality of service with the same network
infrastructure. In MPLS networks, link congestion caused by
shortest path IGP-like routing of LSPs can cause LSP setup re-
quests to be rejected even though these requests may have been
admissible using a different routing scheme. Therefore, routing
schemes that can make better use of network infrastructure are
needed. Efficient network usage is the key purpose of network
traffic engineering and it has been suggested that one of the most
significant initial applications of MPLS will be in traffic en-
gineering [3]. RSVP extensions to support explicit routing by
incorporating an EXPLICIT_ROUTE object into RSVP Path
messages has been proposed in [2]. The intent is to allow the
MPLS network to be able to control the path from ingress node
to egress node, and therefore optimize the utilization of network
resources and enhance performance.

C. Bandwidth Guaranteed LSPs

Another key aspect of MPLS is that the signaling mecha-
nisms for LSP setup will permit specification of quality-of-ser-
vice attributes for the LSP. This is already inherent to RSVP
(refer to [2] for a discussion of RSVP extensions relevant to
MPLS). In this paper, we mostly consider only the setting up and
routing of LSPs with bandwidth guarantees (which we merely
refer to as LSPs in the rest of the paper). This does not mean
that SLAs cannot incorporate other metrics such as delay and
losses. We concentrate on bandwidth routing because we think
that the most common traffic engineering usage of LSPs will be
to setup bandwidth guaranteed paths. If QoS constraints such
as delays and losses are to be incorporated in SLAs, the most
practical way of handling this, given the traffic descriptor and
SLA, is to convert such an SLA into an effective bandwidth re-
quirement for the LSPs (with the queueing delays and losses
primarily restricted to the network edges) which can then be
routed through the MPLS network as a constant-bit-rate stream
encountering only negligible or predictable queueing delays in
the MPLS core network. Routing taking delay and loss metrics
directly into account is computationally difficult and requires in-
formation that are difficult to acquire (such as nodal load versus
delay characteristics). Note that if the SLA provides only band-
width guarantees, then there is no need for the initial conversion
of SLAs into effective bandwidths. Even though we discuss the
routing problem with only bandwidth constraints, it is possible

1There is also an option for partial specification of routes. However, in this
paper we restrict attention to the case where the routes are fully specified.

to incorporate various policy, hop-count, and delay constraints
within the bandwidth-routing framework. We briefly mention
some possible approaches, but that is not the focus of this paper.

II. REQUIREMENTS FORMPLS ROUTING ALGORITHMS

We first try to identify the main requirements that a path se-
lection algorithm for MPLS must satisfy in order to be useful in
practice.

1) Necessity to use on-line algorithms. For traffic en-
gineering purposes, it is usually assumed that all
point-to-point demands are known. While this is a valid
assumption for network design, for MPLS applications
this implies that all LSPs that traverse the network are
known at the time of initial routing. This is unlikely to be
the case in practice. Furthermore, in this offline (all LSPs
are known) model, the objective usually is to make the
most efficient use of the network, i.e., to minimize the
resource usage for the LSPs that are being routed. Note
that with this objective, it may happen that there is no
available capacity between certain ingress–egress routers
after the routing has been done (even though a different
routing may have resulted in some available capacity
between those routers). In the offline model, this lack of
residual capacity between certain ingress–egress pairs
is not relevant since all LSPs that need to be routed are
known and no future routing requests are expected. If any
new LSPs are to be routed, this may require rerouting
of existing LSPs. It is unlikely that existing LSPs will
be rerouted except upon link failures (and perhaps for
relatively rare network reoptimization). In practice, since
the possibility of having to route future LSP demands
cannot be excluded, the routing algorithm must be an
on-line algorithm capable of routing requests in an
“optimal” manner when the requests are not all presented
at once and rerouting of existing LSPs is not allowed.

2) Use knowledge of ingress–egress points of LSPs. Even
though future demands may be completely unknown, the
routers where LSPs can potentially originate and termi-
nate are known since these are the network’s edge routers.
The algorithm must be able to use any available knowl-
edge regarding ingress–egress pairs and must not always
assume that every router can potentially be an ingress and
egress point (though this may be the case sometimes). To
our knowledge, the algorithm we present is the first algo-
rithm to take ingress–egress information explicitly into
account.

3) Good rerouting performance upon link failure. This is
clearly an important performance metric. When a link
fails, it must be possible to find alternate routes for
as many LSPs as possible. If, before failure, certain
ingress–egress pairs have no residual capacity available
between them, then rerouting LSPs between these pairs
after link failure is not possible. The algorithms that we
present try to maximize some surrogate measure of the
residual capacity between the ingress–egress pairs and
this makes them perform well upon link failure.

2568 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

4) Routing without traffic splitting. Although splitting is
used for load balancing purposes (by routing demands
over multiple LSPs at the ingress point), it is not permis-
sible for the routing algorithm to always split traffic in
an arbitrary manner since the traffic being routed may
be inherently unsplittable. Hence, the algorithm must be
able to route a desired amount of bandwidth between
a given ingress–egress pair without being able to split
traffic onto multiple paths in an arbitrary way at every
potential router in the path even though such splitting
could permit better network usage.

5) Computational requirements. We show later that the op-
timal routing in our formulation is NP-hard. Any heuristic
or approximation algorithm must be implementable on
routers and route servers and must execute within a rea-
sonable time-budget for networks with a few thousand
ingress–egress pairs.2

6) Feasibility of distributed implementation. Even though
the paper presents the route computation as being done
in a centralized route server (which we believe is a vi-
able option for intradomain MPLS routing), it is desir-
able that the algorithm be amenable to distributed imple-
mentation where each LSPs explicit route is computed at
the local ingress router without communication with a do-
main or area wide route server. Hence, it is desirable for
the algorithm to restrict its use of dynamic information to
information derivable from current routing protocols or
their extensions. The algorithm we propose uses topology
information and residual capacities on links. This is the
same information that even min-hop routing with band-
width guarantees will require. Within an OSPF area, the
topology information can be derived from the link state
database and residual capacities can be obtained if exten-
sions such as those suggested in [10], [13], [15] are im-
plemented. We also use the possible set of ingress–egress
pairs. This information is quasi-static and we take that to
be provisioned information (note that the algorithm is ap-
plicable even if this information is unavailable because
then every router can be assumed to be a potential ingress
and egress).

7) Information useful for aggregation. While routing over
multiple areas or multiple domains, the algorithm should,
if possible, generate information that can be useful for ag-
gregation of QoS metrics. Although this is not a necessity,
it is a desirable feature and our algorithm takes this into
account.

8) Reoptimization. The on-line routing objective must
permit optimization of existing LSPs’ routes by using the
same objective. Although frequent rerouting (as would
happen with offline algorithms) is not permissible, it
may be acceptable to occasionally reroute existing LSPs
to optimize routing so as to carry more traffic. This
optimization is possible because the on-line route selec-

2The number of edge routers may be large but edge routers are usually con-
nected to the same core router. This router can be taken as the ingress–egress
point for the core MPLS network, and we do not expect more than a few thou-
sand ingress–egress pairs in a core backbone network.

tion happened with less information than that available
later, when the set of LSPs that have already been setup
is known. Note that this optimization cannot use an
offline algorithm since it still has to account for future
arrivals. If occasional optimization is desired, the on-line
algorithm’s path selection objective must be such that a
consistent optimization is possible (this is explained later
in the paper).

9) Policy constraints. The algorithm must be able to incor-
porate common policy constraints such as policy restric-
tions on the type of links or routers that are permissible
for routing a given LSP.

10) Other requirements. The algorithm must be able to ac-
commodate requirements such as preemption and setup
priorities. A detailed specification of requirements is in
[3].

III. PROBLEM DEFINITION AND SYSTEM MODEL

We consider a network of routers. A subset of these routers
is assumed to be ingress–egress routers between which LSPs
can be setup. However, it is not necessary that there be a po-
tential LSP between every ingress and every egress. Instead,
from a certain ingress, LSPs may be allowable only to certain
egresses. This may be because of policy or service constraints
(such as certain VPN traffic may only originate and exit at cer-
tain ingress–egress pairs). We assume that any such information
is known, changes not very frequently, and is made available to
the route server (we describe for simplicity only a centralized
route computation in the paper) by a provisioning or adminis-
trative mechanism.

Each request for an LSP setup arrives at a route server which
determines the explicit route for the LSP. The request either ar-
rives directly to the route server (if the LSPs are being setup
manually) or may first arrive at ingress routers which then query
the route server to generate the explicit route (details of proto-
cols that may be used for this interaction are left out for concise-
ness as also are details of mechanisms to initialize definitions
of FECs). The explicit route is then communicated back to the
ingress router which then uses a signaling mechanism such as
RSVP or LSP to setup the path to the egress and to reserve band-
width on each link on the path.

For calculating the explicit route, the route server needs to
know the current topology and available capacities. We assume
the topology is either known administratively or that a link state
routing protocol is operational and that its link-state database is
accessible. The algorithm keeps track of available capacities and
we assume that the initial link capacities are known (this is for
descriptive purposes only; if routing protocol extensions allow
the determination of residual bandwidths, then that information
can be used). Failure of LSPs due to link failures is detected
from signaling protocol (CR-LDP or RSVP) information by the
edge routers. They can request a rerouting of the LSPs after
the link-state database has been updated by routing protocols
or by other means. (An alternative, not studied in the paper,
is to setup a disjoint path backup LSP so that failures can be
accommodated by changing the FEC to LSP mapping at the
ingress routers.)

KAR et al.: MINIMUM INTERFERENCE ROUTING OF BANDWIDTH GUARANTEED TUNNELS WITH MPLS TRAFFIC ENGINEERING APPLICATIONS 2569

We consider the request for an LSPto be defined by a triplet
. The first field specifies the ingress router, the

second field specifies the egress router, and the third field
specifies the amount of bandwidth required for LSP. We

assume that the QoS requirements have been translated into an
effective bandwidth requirement. We assume that requests for
LSPs come in one at a time and there is no knowledge of the
characteristics of future demands. The objective is to determine
a path (if one exists) along which each demand for an LSP is
routed so as to make “optimal” use of network infrastructure.

IV. CURRENT STATE OF THE ART

We define the residual bandwidth along a link to be the dif-
ference between the bandwidth of the link and the sum of the
LSP demands that are routed on that link. First note that a new
LSP can be routed along a given link only if the residual band-
width on that link exceeds the bandwidth requested by the new
LSP. These links will be referred to as feasible links (with re-
spect to the given LSP demand). The network consisting of all
the routers and just the feasible links will be referred to as the
feasible network. Therefore, when performing the routing, we
can restrict our attention to paths in the feasible network. Note
that if the ingress and the egress routers are disconnected in
the feasible network, then there is no path that has the desired
bandwidth and the LSP request is rejected. The objective of any
routing scheme is to reject as few demands as possible.

The most commonly used algorithm for routing LSPs is
the min-hop algorithm [2]. In this algorithm, the path from
the ingress to the egress with the least number of feasible
links is chosen. This algorithm, although simple, uses the
same information that the proposed new algorithms use. Its
performance in terms of efficient network usage can be easily
improved upon with a little more computation. With the rapid
rise in processor speeds and with traffic trunks not expected to
be setup and torn down at high rates, it is justifiable to tradeoff
increased computation for more efficient network usage. The
min-hop algorithm does not take information on ingress–egress
pairs into account nor does it adapt routing to increase chances
of successful rerouting upon link failure.

A min-hop like algorithm which attempts to load balance the
network traffic is proposed in [11]. This widest-shortest path
algorithm (WSP) finds a feasible min-hop path between ingress
and egress such that the chosen min-hop path has the maximum
residual path bottleneck link capacity. This algorithm too does
not take ingress–egress information into account. With every
node being assumed to be a potential ingress and egress point,
a widest path algorithm without a min-hop restriction does not
work well since long paths which increase network usage get
chosen. Hence, a widest-shortest path hop heuristic performs
better. However, if the ingress–egress pairs are known, then as
we shall see later, an algorithm which picks paths longer than
min-hop works well provided it avoids unnecessarily loading
certain “critical” links.

More sophisticated algorithms in addition use the residual
bandwidth on the link to influence the weight of the link and
the shortest path is chosen with respect to these dynamically
changing weights [16]. Since the weights are chosen to increase

Fig. 1. Illustrative example.

with link load, the idea is not to use up link capacity completely
if alternate lower loaded paths are available. This has the ten-
dency to make capacity available for future demands. Neverthe-
less, this algorithm is also oblivious to information regarding
ingress–egress pairs, and therefore can pick long paths to defer
loading on links which may not be important to satisfy future
demands.

In [12], a mathematical programming formulation is pre-
sented for on-line routing taking ingress–egress pairs into
consideration. The case of both split and unsplit routing of
bandwidth requests was presented. In this paper, instead of
solving a linear or integer program, the approach is to route
using a shortest path computation on an appropriately weighted
graph. This is described in the next two sections.

V. KEY IDEAS FORMINIMAL INTERFERENCEROUTING

ALGORITHM

In this section, we give an informal description of the key
ideas used in our routing algorithm. The next section has a more
formal mathematical description and also a proof of NP-hard-
ness of this formulation of the MPLS routing problem. The
NP-hardness justifies use of a heuristic algorithm in the absence
of a known approximation algorithm.

A. Illustrative Example

As seen in the previous section, existing schemes take into
account the topology of the network and the residual capacities
on the links, but do not take into account the location of the
ingress/egress routers. These routers serve as sources and des-
tinations of future traffic. If routing is done oblivious to the lo-
cation of these sources and destinations of traffic, then we may
“interfere” with the routing of some future demands. We illus-
trate this with a simple example. Consider the network shown
in Fig. 1. There are three potential source destination pairs,

Assume that all links have a
residual bandwidth of 1 unit. We now have a request for an LSP
between and with a bandwith request of 1 unit. If min-hop
routing is used, the route will be 1-7-8-5. Note that this route
blocks the paths between and as well as and . In
this example, it is better to pick route 1-2-3-4-5 even though the
path is longer.

B. Interference

The key idea is to pick paths that do not interfere too much
with potential future LSP setup requests (demands) between

2570 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

other source destination pairs. We first have to make this
concept of interference more concrete. Consider the maximum
flow (maxflow) value [1] between a given ingress–egress
pair . This maxflow value is an upper bound on the
total amount of bandwidth that can be routed between that
ingress–egress pair . Note that maxflow value
decreases whenever a bandwidth demand ofunits is routed
between and . Note that the value of can also decrease
when an LSP is routed between some other ingress–egress
pair. We define the amount of interference on a particular
ingress–egress pair, say , due to routing an LSP
between some other ingress–egress pair as the decrease in the
value of .

C. Minimum Interference Paths

With interference defined as above, we can think of a
minimum interference path for an LSP between, say ,
as that explicit route which maximizes the minimum maxflow
between all other ingress–egress pairs. Intuitively, this can
be thought of as a choice of path between that
maximizes the minimum open capacity between every other
ingress–egress pair. Although this formulation has intuitive
appeal, it has the drawback that it is the minimum maxflow
that impacts the routing irrespective of values of the other
maxflows. Hence, another objective might be to pick a path
that maximizes a weighted sum of the maxflows between every
other ingress–egress pair. We formalize these notions in the
next section. These formulations not only make capacity avail-
able for the uncertain but possible arrival of future demands,
but also make capacity available for rerouting of LSPs in case
of link failures (this is illustrated by experimental results in
Section VIII).

D. Critical Links

To progress from the notion of minimum interference paths
to a viable routing algorithm that uses familiar max-flow
and shortest path algorithms, we need the notion of “critical
links.” These are links with the property that whenever an
LSP is routed over those links, the maxflow values of one or
more ingress–egress pairs decreases. The next section gives
an algorithm to determine critical links within a reasonable
amount of computation (i.e., remains within a small target time
budget for networks with hundreds of routers and thousands of
ingress–egress pairs).

E. Path Selection by Shortest Path Computation

Once the critical links are identified, we would like to avoid
routing LSPs on critical links to the extent possible. Also, we
would like to utilize the well-used Dijkstra or Bellman–Ford al-
gorithms to compute the actual explicit route. We do this by gen-
erating a weighted graph where the critical links have weights
that are an increasing function of their “criticality” (see the next
section for the actual link weight functions). The increasing
weight function is picked to defer loading of critical links when-
ever possible. The actual explicit route is calculated using a
shortest path computation as in other routing schemes.

VI. M ATHEMATICAL FORMULATION

Before we describe the problem formulation, we define some
of thenotationused.Let describethegivennetwork,
where is the set of routers (nodes) andthe set of links (arcs)
and is the bandwidth of the links. Let denote the number
of nodes and the number of links in the network. We assume
that all bandwidths and demands for bandwidths are integral.
Assume that there are a set of distinguished node (router) pairs

. These can be thought of as the set of potential ingress– egress
router pairs. We denote a generic element of this set by .
Let denote the cardinality of the set. All LSP setup requests
(demands) are assumed to occur between these pairs. Let
represent the node-arc incidence matrix. Each row in this matrix
corresponds to a node in the graph, and each column of the matrix
corresponds to an arc. Each column has exactly two nonzero en-
tries.Thecolumncorresponding to arc hasa in the row

and a in row , and a zero corresponding to all other rows.
Assume that the arcs are numbered sequentially in any arbitrary
order.Let be an -vector corresponding to a pair .
Let represent a scalar that is the maximum flow that can be
sent between nodesand in the residual network. Let be an

-vector of residual capacities. Entryin vector corresponds
to the residual capacity of arc. The value of is initialized to

. Let represent an vector with in position and
in position . We assume that demands arrive one at a time. The
current demand is assumed to be between routersand , where

. The demand is assumed to be for(integral) units
of bandwidth. Note that at this point other demands may already
havebeenrouted,and the residualcapacitiesof thearcshavebeen
updated to reflect these routed demands.

Assume that the maximum flow (maxflow) problem is now
solved between an ingress–egress pair using the current
residual capacity of an arc as the arc capacity. This maximum
flow value represents an upper bound on the total amount of
bandwidth that can be routed fromto , and this bound is tight
in the case of unit demands. We define the interference between
a given path betweenand , and the ingress–egress pair ,
as the reduction in maxflow value between that ingress–egress
pair due to the routing of bandwidth on that path. Since we do
not assume any knowledge of future demands, one possibility is
that the demand of units between and be routed to maxi-
mize the smallest maxflow value for the ingress–egress pairs in
the set excluding the pair , i.e., . This problem
MAX-MIN-MAX can be formulated as an integer programming
problem, as stated below. We do not want to solve the integer
program to calculate explicit routes. Later, we will present al-
gorithms which avoid solving the integer program and yet work
very well in practice.

(1)

(2)

(3)

(4)

(5)

(6)

KAR et al.: MINIMUM INTERFERENCE ROUTING OF BANDWIDTH GUARANTEED TUNNELS WITH MPLS TRAFFIC ENGINEERING APPLICATIONS 2571

Equation (1) is the maximum flow problem for each of the
ingress–egress pairs in except the current pair . Note
that represents the maximum flow value for the pair .
Equation (2) states that units of flow have to be sent between
nodes and . Equation (3) ties up the variables for these prob-
lems. It ensures that the maximum flow problems only utilize
the arc capacities that are left over after routing the current de-
mands. The nonnegativity restrictions are specified in (5), and
(6) ensures that the demand is routed along a single path.

The main drawback with the max–min formulation is that the
only value that determines the objective function is the value
of the smallest maxflow. Other flows do not affect the optimal
solution value. For example, if there are 4 ingress–egress pairs,
then the maxflow vector solutions (10, 5, 15, 20) and (15, 5, 20,
30) are treated as the same. In practice, the second solution will
be preferred to the first. There are two ways to get around this
problem. One way is to solve an alternate formulation to max-
imize the weighted sum of the maxflows. In this formulation,
WSUM-MAX, the objective function of MAX-MIN-MAX, is
replaced with

where is the weight for the ingress–egress pair , and
constraints (4) are dropped from the problem. The weights for
each ingress–egress pair are chosen to reflect the “importance”
of the ingress–egress pair to the service provider (as, for in-
stance, the relative revenue potential of traffic carried between
each ingress–egress pair). Next we state a couple of definitions
that are needed in order to develop the second formulation.

Definition 1: Given two vectors and , vector is defined
to be lexicographically not less thanif the first nonzero com-
ponent in is nonnegative. We will denote thatis lexico-
graphically not less thanby .

Definition 2: Given an -vector , an nondecreasing
ordering of , denoted by , is a renumbering of the
components of such that .

The second way to get around the problem with MAX-MIN-
MAX is to define the problem LEX-MAX. In this problem, the
objective is to find a route such that the smallest maxflow value
is as high as possible. Among all the solutions with the same
smallest maxflow value, the secondary objective is to find the
solution such that the second lowest maxflow is as high as pos-
sible, and so on. More formally, let be the set of feasible

-vector of maxflow values between the ingress–egress
pairs (all pairs except the current one) after the current demand is
routed. The objective of LEX-MAX is to find the such that

for all . It is possible to define an integer
programming problem (which is much more complicated than
MAX-MIN-MAX) to solve LEX-MAX. Since we do not solve
this problem exactly, we will not state this integer programming
problem here. Note that solving LEX-MAX is at least as difficult
as solving MAX-MIN-MAX. We now show that all the problems
defined above are NP-hard. First we show that WSUM-MAX is
NP-hard. Inorder toprove this, we first show the following result.

Lemma 1: In both these formulations given above, there ex-
ists an optimal integral if all the capacities are
integral.

Proof: Consider an optimal solution, to the max–min
problem. Note that is integral. Set in
WSUM-MAX. The problem then decomposes into
independent maxflow problems. The capacity of the links in
each of these maxflow problems is the integral vector .
The constraint matrix for the maxflow problem is totally
unimodular. Therefore, there exists an optimal solution for
the maxflow problem that is integral if all the capacities are
integral.

We can now use this result to prove the following.
Theorem 2: The problem WSUM-MAX is NP-hard.

Proof: (Outline) Consider the case where there are just
two disjoint ingress–egress pairs and . Con-
sider the problem of routing one unit of flow (without splitting)
from to , and the question is whether this can be done so
that the maxflow between and is greater than some value

. Since both the flows are integral, one can use the same tech-
niques used by Even, Itai, and Shamir [6] to show that the di-
rected two commodity integral flow problem is NP-hard. The
transformation is from 3SAT.

Theorem 3: Problems MAX-MIN-MAX and LEX-MAX are
NP-hard.

Proof: Since even the two ingress–egress pair problem
is NP-hard, this implies that MAX-MIN-MAX is NP-hard.
Since solving LEX-MAX is at least as difficult as solving
MAX-MIN-MAX, this problem is also NP-hard.

VII. SOLUTION APPROACH

In this section we outline a solution approach for solving
WSUM-MAX and LEX-MAX. We first outline the approach for
WSUM-MAX, and later in this section we show how to modify
this approach to solve LEX-MAX approximately.

A. Solving WSUM-MAX

In light of the fact that WSUM-MAX is NP-hard, one option
is to solve the linear programming relaxation of this problem. If
the linear program results in not splitting the demand ofunits
between and , then the solution is optimal to WSUM-MAX.
If it splits the flow, good heuristics have to be found to compute a
single path. The main drawback of this approach is the fact that it
is not possible to incorporate any path constraints. For example,
if there is a restriction on the number of hops that the demand
can take, then it is not possible to incorporate it into the linear
programming formulation. Further, if the demand is split along
many different paths, then we need a good rounding approach
to generate a good feasible solution to the problem where the
demand is not split. Hence we do not use this approach. Also,
because of the splitting, the linear programming formulation is
not a good benchmark for evaluating the efficacy of our routing
heuristic. An integer programming formulation avoids the split-
ting problem but is feasible only for small problems.

The approach that we take is to determine appropriate weights
for the links in the network and route the demand along the
weighted shortest path. Additional path constraints can be in-
corporated when the shortest path problem is being solved. The
problem now is to determine appropriate link weights so that the
current flow does not interfere too much with potential future

2572 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

demands. The link weights are estimated by the following pro-
cedure. First we relax constraint (2), i.e., we remove the require-
ment that units of flow have to be routed between nodesand
. Equivalently, this can be viewed as setting the value ofto

zero. This results in the decoupling of WSUM-MAX into
independent maxflow problems, one for each ingress–egress
pair in . These problems are now solved and letrep-
resent the maxflow value for ingress–egress pair . The op-
timal solution to WSUM-MAX when is given by .
Now if some demand betweenand is routed on a link, the
residual capacity of the link decreases. This may result in a de-
crease in the current optimal solution value of WSUM-MAX.
The weight of a link is now estimated to be the rate of change in
the optimal solution of WSUM-MAX with respect to changing
the residual capacity of the link. Let represent the
change in maxflow value between ingress–egress pair if
the residual capacity of linkis changed incrementally. There-
fore , the partial derivative represents the reduction in the
maxflow value when an incremental amount of the current de-
mand is routed on link. The weight of a link is set to

(7)

The weight of a link represents the change in the objective func-
tion value of WSUM-MAX if an incremental amount of the cur-
rent demand is routed on that link. Note that the weight of the
link is a heuristic since it ignores the dependencies between
the different links, and also the fact thatunits of flow have to
be routed from to . By linear programming duality, associ-
ated with each maximum flow is a minimum cut. The maximum
flow value of a particular ingress–egress pair decreases when-
ever the capacity of any of the arcs in any mincut for that pair is
decreased infinitesimally. In fact, the maximum flow value will
not decrease if the capacity of any other link (not in a mincut)
is decreased infinitesimally.

Definition 3: An arc is defined as critical for a given
ingress–egress pair, if that arc belongs in any mincut for that
ingress–egress pair. The mincut is computed with the current
residual capacities on the links.

Let represent the set of critical links for the
ingress–egress pair . From the maxflow-mincut, theorem

if
otherwise

therefore,

Therefore, the problem of computing the weights of the arcs
is now reduced to determining the set of critical arcs for all
ingress–egress pairs. The maximum flow between two nodes
in a network can be computed in time by the Gold-
berg Tarjan highest label preflow push algorithm [8] or in time

using an excess scaling algorithm. There may
be several alternate mincuts for a given ingress–egress pair. The

critical links for the ingress–egress pairs are arcs belonging to
the union of all these mincuts. We show that the set of critical
links for a given ingress–egress pair can be determined by one
execution of the maxflow algorithm between that ingress–egress
pair. We use a flow residual graph [1] in determining critical
links.

Theorem 4: Let be the given directed graph.
Let represent the source node andthe destination node. As-
sume that a maximum flow betweenand has been computed.
Let be the set of nodes reachable fromin the flow residual
graph. Let represent the nodes that can reach the sinkin the
flow residual graph. An arc if

• arc is filled to capacity,
• and ,
• there is no path betweenand in the flow residual graph.

Proof: (Outline) Let represent the set of nodes reachable
from in the residual graph. let . Note that from
the assumptions made bothand are not in . Therefore, arc

belongs in the minimum cut .
The procedure for determining all the arcs in takes

time in addition to the maxflow computation. In prac-
tice, the running time for determining will be dominated
by the maxflow computation.

• The value of can be chosen to reflect the importance
of the ingress–egress pair .

• If the value of for all then represents
the number of ingress–egress pairs for which linkis crit-
ical.

• The weights can be made inversely proportional to the
maxflow values, i.e., where is the
maximum flow value for the ingress–egress pair .
This weighting implies that the critical arcs for the
ingress–egress pairs with lower maximum flow values
will be weighted heavier than the ones for which the
maxflow value is higher.

• If the network also carries best effort traffic and if the
delays are proportional to the flow on the links, then the
residual capacity of the link can be used to influence the
weight of the link. For example, the weight of linkcan be
set to , where and is defined
above and is the residual capacity of link.

Once the weights of the links are determined, the idea is to
route the traffic along the shortest weighted path fromto . Be-
fore this is done, all links having a residual capacity of less than

units are eliminated. When computing the shortest weighted
path, the weight of link is set to . In order to ensure that
among arcs with zero weights, i.e., arcs that are not critical to
any ingress–egress pair, we choose the one where the number of
hops is minimal, we set the weight of these arcs to some small
positive number. A high level view of the minimum interference
routing algorithm (MIRA) is described in the figure.

Minimum Interference Routing Algorithm
(MIRA)
INPUT:
A graph and a set of residual

capacities on all the arcs. An ingress

KAR et al.: MINIMUM INTERFERENCE ROUTING OF BANDWIDTH GUARANTEED TUNNELS WITH MPLS TRAFFIC ENGINEERING APPLICATIONS 2573

node and an egress node between
which a flow of units have to routed.

OUTPUT:
A route between and having a capacity

of units.
ALGORITHM:
1. Compute the maxflow values

.
2. Compute the critical link sets

.
3. Compute the weights

4. Eliminate all links which have residual
bandwidth less than and form a re-
duced network.

5. Using Dijkstra’s algorithm compute the
shortest path in the reduced network
with as the weight of link .

6. Route the demand of units from to
along this shortest path and update

the residual capacities.

Remarks:

1) For routing each demand, maxflow problems have to
be solved. The maximum flow values are computed using
an implementation of the Goldberg Tarjan highest level
pushing algorithm. We have observed that this algorithm
is extremely fast [1] and it is possible to solve thousands
of maxflow values on networks with a few hundred nodes
in the order of a few seconds.

2) If the links are undirected, then the number of maxflow
computations will be using the Go-
mory–Hu algorithm [9]. Some modifications are needed
in order to maintain all the arcs in the mincut, but this
can be done efficiently.

3) If the links are directed, it is unlikely that the number
of maximum flow computations can be reduced to less
than . Frank and Frisch [7] give examples where
the number of different maximum flow values is .
However, if an approximation is made, where the critical
links for a particular ingress–egress pair, say , are
defined as the critical links for if , and
the critical links for otherwise. In other words, the
critical links for a given pair are defined as the
links in the minimum cut in the direction in which the
maxflow value is smaller. In this case, one can show that a
suitable symmetric cut function can be defined and using
the method of Cheng and Hu [5] the critical links can be
determined with maxflow computations.

4) This algorithm can be easily adapted if the routers are bot-
tlenecks, in addition to the links being bottlenecks. This is
done by splitting the nodes in the network into two nodes
and introducing an arc between these two nodes. The node
capacity is now represented as an equivalent arc capacity
on this newly introduced arc.

5) It is easy to incorporate hop-count constraints, since the
final routing is done via a shortest path algorithm. We can

use Bellman–Ford instead of using Dijkstra’s algorithm
in order to incorporate hop count constraints. Other con-
straints such as delay constraints make the problem a con-
strained shortest path problem which is NP-hard. How-
ever, one can use a pseudopolynomial time algorithm or
some heuristic approach to solve this problem.

B. Solving LEX-MAX

As outlined in the previous section, LEX-MAX is NP-hard.
One can solve LEX-MAX as a sequence of MAX-MIN-MAX
problems with additional constraints. This approach will
be computationally intensive. Instead, we approximate the
LEX-MAX problem as a special case of the WSUM-MAX
problem (with a special set of weights) and use the minimum
interference routing algorithm to solve LEX-MAX. Recall that
given , the set of feasible -vector of maxflow values
between the other ingress–egress pairs after the current
demand is routed, the objective of LEX-MAX is to find the

such that for all . Note that the
represents a nondecreasing arrangement of components of.
The approximation that we make is to assume that the ordering
of the maxflow values, after the current demand is routed, will
be the same as the current ordering of the maxflow values.
This is usually accurate considering that demand to be routed
is small. However, this is clearly not always true. Intuitively,
making this approximation means that we want to protect the
ingress–egress pair with the smallest current maxflow value
first, followed by the second smallest, and so on. This is done by
solving WSUM-MAX where the weight of the ingress–egress
pair with the smallest maxflow value is the highest followed by
the second smallest maxflow value, and so on. Assume that the
ingress–egress pairs are numbered such that

where denotes the maxflow value for the ingress–egress pair
. Now we determine the constants so that

WSUM-MAX solves the approximate version of LEX-MAX.
We want to choose weights for WSUM-MAX such that a dif-
ference of one unit in theth smallest maxflow should outweigh
the effect of the maximum difference in all of the th,

th, th smallest maxflows. Then we have

(8)

where is the largest change in maxflow value for any
ingress–egress pair. Sincerepresents the change in maxflow
value after routing a demand of units,

(9)

The inequality comes from the fact that on routing a demand of
value , the value of any cut can be reduced by at mosttimes
the size of the cut, which is bounded by . From (8) and (9)
we get

(10)

2574 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

We can now use MIRA to solve the approximate version of
LEX-MAX.

C. -Critical Links

Recall that a link is critical for a particular ingress–egress pair
if routing one unit of flow (of the current demand) on that link
reduces the maxflow value for the ingress–egress pair. This is
the same as saying that the maxflow value for the ingress–egress
pair decreases when the capacity of the critical link is decreased
by one unit. This also implies that if the capacity of a noncrit-
ical link for an ingress–egress pair is decreased by one unit,
then the maxflow value for that ingress–egress pair does not
decrease. However, if the capacity of a noncritical link for a
given ingress–egress pair is decreased by more than one unit,
the maxflow value for that ingress–egress pair may decrease.
This brings us to a generalization of the notion of a critical link,
a -critical link.

Definition 4: A -critical link for an ingress–egress pair is
a link such that if the capacity of the link is decreased by, the
maxflow value for the ingress–egress pair decreases.

Note that the critical links as defined in Definition 3 are 1-crit-
ical links, because if the capacity of a link is decreased by one
unit, then the maxflow decreases by one unit. In the definition of

critical links, we just insist that the maxflow value decreases
(not necessarily by units). The notion of a link being crit-
ical captures the notion that there may be links that are close to
being critical that we may want to identify. This is especially
important if the computation of critical links is done periodi-
cally, i.e., once every demands. In this case, it is important
to “protect” links that are currently not critical but are close to
being critical because they may become critical before the com-
putation is performed again. Next comes the question of finding
the set of -critical links for a given value of . One naive
way to find whether a link is -critical for an ingress–egress
pair is to reduce the capacity of the link by an amount, and
compute the maxflow all over again, and check if the maxflow
value decreases. However, this approach is prohibitively expen-
sive, since it requires times the time for a single maxflow
computation to find links that are critical. A faster approach of
finding -critical links is an open algorithmic problem. Instead
of determining the set of -critical links exactly, we determine
the approximate set of -critical links. The heuristic that we use
is described in APPROX -CRITICAL LINKS.

Approx -Critical Links
INPUT: A graph and a set of

residual link capacities
A threshold and a ingress–egress pair

OUTPUT: , the set of -critical
links for ingress–egress pair

PROCEDURE:
1.
2. Compute maxflow for ingress–egress

pair
Let be the flow residual graph
after the maxflow computation, and

Fig. 2. Illustrative example (network 1).

be the residual capacity of any link
in .

3. For each link , include in
if and only if both of the fol-

lowing two conditions hold:

There is no path between and in
with capacity greater than or

equal to

Note that if the flow residual capacity of a link is not less than
, or if there is a path of capacity from node to node
in the flow-residual graph, then the link cannot be-critical.

However, this is only a necessary condition. Using the proce-
dure APPROX -CRITICAL LINKS, we will determine some
links to be -critical even if they are not. The time-complexity
of APPROX -CRITICAL LINKS is (the same as that
required to determine the exact set of 1-critical links using the
procedure outlined in Theorem 4), in addition to the time com-
plexity for maxflow computation.

VIII. PERFORMANCESTUDIES

In this section, we will compare the performance of our
routing algorithm (MIRA) to min-hop (MHA) and widest
shortest path (WSP) [11] routing algorithms, on some sample
networks. Comparisons will be made using both versions of
MIRA: the one involving the lexicographic criteria (called
L-MIRA), and the other involving the weighted sum criteria
(called S-MIRA). In all the experiments involving S-MIRA,
we will assume the weights of all the ingress–egress pairs to
be the same. The performance of each algorithm is measured
by the proportion of LSPs rejected by the algorithm. We will
also study the effect of the parameterand the frequency of
maxflow computation on the performance of MIRA.

A. Illustrative Example

Most of the performance comparisons shown in this paper
are done using the network shown in Fig. 2. The ingress–egress
pairs are shown in the figure. For this illustrative example, the

KAR et al.: MINIMUM INTERFERENCE ROUTING OF BANDWIDTH GUARANTEED TUNNELS WITH MPLS TRAFFIC ENGINEERING APPLICATIONS 2575

Fig. 3. Decrease in available flow between S1 and D1 due to interference.

capacity of the light links is 12 units and that of the dark links is
48 units (taken to model the capacity ratio of OC-12 and OC-48
links) and each link is bidirectional (i.e., acts like two unidirec-
tional links of that capacity). In all the simulation experiments
described in this paper, LSPs arrive randomly, and at the same
average rate for all ingress–egress pairs.

B. Interference

We first show experimentally that the interference, as defined
in Section VI, is indeed reduced by MIRA in comparison to
min-hop and WSP. We then show that this reduced interference
translates to better LSP acceptance. In the experiments of this
subsection, we will use the network of Fig. 2, but we will scale
all the capacities by 100. This larger capacity network is used for
the performance studies because this permits us to experiment
with thousands of LSP setups. The LSP bandwidth requests are
taken to be uniformly distributed between 1 and 3 units. All the
experiments of this subsection are done for the “static” case, i.e.,
arriving LSPs stay in the network forever. In this case, we will
look at the flows between various ingress–egress pairs after a
certain number of LSPs have arrived.

Fig. 3 plots the decrease in max-flow between ingress–egress
pair (S1, D1) as more and more LSPs are routed between other
ingress–egress pairs. We see that with S-MIRA, there is no inter-
ference at all till more than 2000 LSPs have been setup, whereas
with L-MIRA, there is no interference till 3000 LSPs are routed.
However, every LSP setup using the other two algorithms causes
interference with potential future LSPs between S1 and D1.

Fig. 4 shows the total available flow between S1 and D1 after
every LSP is routed. Note that for L-MIRA, the decrease in the
available flow between S1 and D1 is entirely due to the LSPs
routed between S1 and D1 since, as seen from Fig. 3, there
is no interference at all when the number of LSPs is less than
3000 (the same is true for S-MIRA when number of LSPs is
less than 2000). The available capacities are much lower for
min-hop and WSP. This means that min-hop and WSP should
experience more blocking between S1 and D1. (S1 and D1 were
picked for illustrative purposes only. The same applies for other
ingress–egress pairs.)

Fig. 4. Total available flow between S1 and D1 after every LSP is routed.

Fig. 5. Minimum available flow between all ingress–egress pairs after every
LSP is routed.

Fig. 6. Total available flow between all ingress–egress pairs after every LSP
is routed.

Figs. 5 and 6 show the minimum and the sum of the available
flows, respectively, between every ingress–egress pair after each
LSP is routed. Again, we see that the available flows for MIRA

2576 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

Fig. 7. Static case: number of LSP setup requests rejected for 20 experiments.

Fig. 8. Dynamic case: rejection ratio for 20 experiments—network 1.

are consistently higher than those for min-hop and WSP. More-
over, we see that the available flows for L-MIRA are higher than
S-MIRA. Next we see how these increased available flows trans-
late to better performance.

C. LSP Acceptance

In the first LSP acceptance experiment, we assume that all
LSPs are long lived (“static” case). We load the network with
5000 LSPs and observe the number of LSPs rejected by the
different algorithms. We conducted 20 trials. The results are
shown in Fig. 7. Observe the noticeable degradation in perfor-
mance of min-hop and WSP due to interference. Also note that
L-MIRA performs much better than S-MIRA; till 5000 LSP ar-
rivals, the number of rejects in L-MIRA is zero for all the ex-
periments. Note that in S-MIRA, in an attempt to maximize the
total available maxflow over all ingress–egress pairs, the avail-
able capacity between some ingress–egress pair may become
very small, causing a large number of rejects. L-MIRA, how-
ever, avoids this problem by giving the maximum priority to the
ingress–egress pair with the least maxflow, and hence performs
better.

In the second experiment, we tried to determine the dynamic
behavior of the three algorithms. Fig. 8 shows the proportion of

Fig. 9. Dynamic case: rejection ratio for 20 experiments—network 2.

Fig. 10. Dynamic case: rejection ratio for 20 experiments—network 3.

LSPs rejected for 20 experiments, under the following scenario.
LSPs arrive between each ingress–egress pair according to a
Poisson process with an average rate, and the holding times are
exponentially distributed with mean . For our experiments,

. In this case, too, bandwidth demands for LSPs are
uniformly distributed between 1 and 3 units. For our experiment
in this case, we take the same network as in Fig. 2 (network 1),
but the capacities are scaled only by 10 (and not by 100 as for
the static case—this is done so that the system “warmup” time is
not too large). The rejection ratio is calculated over a window of
approximately 1 000 000 LSP setup requests. Again, we see that
both L-MIRA and S-MIRA perform much better than min-hop
and WSP. Between L-MIRA and S-MIRA, L-MIRA performs
better, as we would expect.

Figs. 9 and 10 show the proportion of LSPs rejected for 20
experiments, for the dynamic case, under the same conditions
as above, but for two other networks, network 2 (18 nodes, 30
links), and network 3 (20 nodes, 35 links). In all the cases, we
see that S-MIRA and L-MIRA perform much better than MHA
and WSP. Note that in Fig. 10, L-MIRA and S-MIRA perform
identically.

Fig.11showsresults for thesameexperimentalsetupasthat for
Fig.8,except that the load ischangedso that the rejection ratio for

KAR et al.: MINIMUM INTERFERENCE ROUTING OF BANDWIDTH GUARANTEED TUNNELS WITH MPLS TRAFFIC ENGINEERING APPLICATIONS 2577

Fig. 11. Dynamic case: rejection ratio for 20 experiments, operating point with
lower rejection ratio—network 1.

TABLE I
PERCENTAGEIMPROVEMENT IN REJECTIONRATIOS (COMPARED TOMHA) FOR

VARIOUS ALGORTIHMS FORDIFFERENTNUMBERS OFINGRESS–EGRESSPAIRS

the minimum interference based algorithms is around 1%. Com-
paring toFig.8,wesee that theperformance improvementofboth
L-MIRA and S-MIRA, in comparison to min-hop and WSP, is
even higher at this operating point of lower rejection ratios.

Also, for the same experimental setup as that for Fig. 8, we
varied the number of ingress–egress pairs and compared the per-
centage improvement in rejection ratios with respect to the re-
jection ratio for min-hop. The results are shown in Table I. We
see that even with a large number of ingress–egress pairs (64
out of a possible 210 ingress–egress pairs), there is significant
performance improvement over min-hop (and also over WSP)
with S-MIRA and L-MIRA.

D. Effect of Critical-Link Computation Frequency on
Performance

In the experiments described so far, the computation of the
maxflow, and hence the computation of the critical links, is
done on every LSP arrival. However, it is worthwhile examining
whether it is necessary to recompute the critical links after each
LSP is routed. Note that without critical link computation, each
LSP routing involves only a shortest-path computation. Ideally,
one would like toavoid frequentcomputationof critical links. We
carried out a number of experiments to determine the effect of the
critical link computation frequency on the system performance.
Five representative trials are shown in Fig. 12, when the routing
algorithm is L-MIRA. The network is the same as the one shown
in Fig. 2 (but with the capacities scaled by 10), and the simulation
conditions are the same as those for the dynamic case described
in the last subsection. In the figure, theaxis shows the rejection
ratio, and the axis shows the interval between two successive
critical link computations, in terms of LSP request arrivals. Note

Fig. 12. Rejection ratio versus interval (in terms of LSP request arrivals)
between successive critical link computations.

Fig. 13. Rejection ratio versus�, for various demand sizesD.

that the computed critical link set, and hence the path weights, do
not change between successive critical link computations. The
plots show that, in general, as we increase the interval between
successive critical link computations, the rejection ratio shows
an increasing trend, as we would expect. However, the rejection
ratio, even when the critical link computation frequency has been
reduced by a factor of 50 or more, does not differ vastly from
the case when the critical link computations are done on every
LSP request arrival. Note that the gradient of the plots are steeper
when the interval between successive critical link computations
is small, and become flattened out as the interval increases, as we
would intuitively expect.

E. Effect of on Performance

Now we will study the effect of the parameter (which is
used for determining the critical link set) on the performance of
the algorithm. Fig. 13 shows some representative examples to
illustrate this. The network is the same as the one in Fig. 2 (with
the capacities scaled by 10), and the simulation conditions are
the same as those for the dynamic case for the last two sub-
sections. However, in this case, the size of each demand () is
kept fixed. In the figure, the results are shown for four different

2578 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 18, NO. 12, DECEMBER 2000

demand sizes (). Moreover, for demand size , the average
load is kept fixed at 300 units. The figure shows,
as we would intuitively expect, that the rejection ratio, in gen-
eral, increases as we increase. A careful inspection shows that
for three out of the four cases, namely , as we
start increasing from 1, the number of rejects decreases very
slightly, after which it increases monotonically (for ,
the number of rejects always increase with increasing). For

, the minimum is attained when . For
, the number of rejects remain the same even as we in-

crease . We have also verified that for , the number of
rejects is the same as that for min-hop. Note that our algorithm
reduces to min-hop when is greater than the maximum link
capacity (then all the links would be considered critical links
and would be given the same weight). Note that in our network,
all but five links have a capacity of 120 units, and the remaining
five have 480 units. Thus, we would expect that our algorithm
would perform similar to min-hop when . In this case,
however, the performance is the same for . Fig. 13
also demonstrates that when the size of the demand is increased
while keeping the average load constant, the number of rejects
increase. This can be intuitively explained in the following way.
Consider two demand sizes,and . First, an arrival of a de-
mand of size is equivalent to a burst of two arrivals of size

. Second, since a flow cannot be split, we may have to reject a
demand of size because of the nonavailability of a path with

units of bandwidth, even though we may be able to route
one (or more) demands of size.

For most of the experiments we have carried out, we have
observed that the minimum rejection ratio is achieved either at

, or , when the demand size is kept fixed at
. However, in a practical scenario, we would expect that the

demand size would not be fixed, and would vary over a range.
What value of achieves the minimum rejection ratio in that
case remains to be seen.

Note that when the demand sizes are small compared to the
link capacities (which is typically the case), setting may
not be a bad choice, if the critical links are computed on every
request arrival. This is also evident from Fig. 13. However, if
the maxflow computation, and hence the determination of the
critical links, is done less frequently, then setting may be
a bad choice, even if the demand sizes are small. In this case, a
lot of flow might be pushed into the network between two suc-
cessive maxflow computations, and hence links that were not
the most critical during a particular maxflow computation might
become the most critical links before the next maxflow com-
putation occurs. Thus, we would like to set to some larger
value, such that it identifies the near-critical links, i.e., the links
that can potentially become bottlenecks before the next maxflow
computation. Fig. 14 illustrates this on a network 2 (18 nodes,
30 links) with 3 ingress–egress pairs. The traffic is Poisson with

, and is uniformly distributed between 1 and 3
units. The plots are shown for the cases when the interval be-
tween successive maxflow computations is 30, 40 (in terms of
LSP request arrivals). The plots demonstrate that when the in-
terval between successive maxflow computations is large, re-
jection ratio initially decreases with increase in, after which
it starts increasing again. When is too small, then we are

Fig. 14. Rejection ratio versus�, for different critical link compuatation
intervals.

Fig. 15. Rerouting performance for 20 trials.

missing out too many near-critical links; while whenis too
large, then too many links are being included in the set of critical
links, reducing the algorithm to min-hop. The value ofwhich
achieves the minimum rejection ratio would, in general, depend
on the demand size distribution and the interval (in terms of LSP
request arrivals) between successive maxflow computations.

F. Link Failure Rerouting Performance

Next we compare the performance of the algorithms in terms
of how good the algorithms are in rerouting already setup LSPs
when a link failure happens. Note that to successfully reroute
an LSP, there must be capacity available between the corre-
sponding ingress–egress pair after the link failure has happened.
Since MIRA tries to leave capacity open between ingress–egress
pairs, it should have better rerouting performance. To test this,
we first route some randomly generated (static) LSPs in the net-
work shown in Fig. 2 (capacities scaled by 100), under the four
different algorithms, S-MIRA, L-MIRA, WSP, and min-hop.
We then cut a randomly chosen link and then use the same algo-
rithm for rerouting the LSPs that had been routed on the link that
is cut. The results, for 20 different trials, are shown in Fig. 15.
For the results shown, the cut link is (1, 3) and the number of

KAR et al.: MINIMUM INTERFERENCE ROUTING OF BANDWIDTH GUARANTEED TUNNELS WITH MPLS TRAFFIC ENGINEERING APPLICATIONS 2579

LSPs routed initially (before the link is cut) is 3800. It can be
seen from the figure that, as expected, S-MIRA and L-MIRA
have much better rerouting performance than min-hop and WSP.
Moreover, in the results shown, L-MIRA performs better than
S-MIRA.

IX. CONCLUDING REMARKS

The primary contribution of the paper is the development of
routing algorithms based on the notion of minimum interfer-
ence. It is based on the observation that usage of certain crit-
ical links must be avoided to the extent possible. The objec-
tive in min-hop routing is to minimize resource usage. It does
not account for traffic asymmetries which result from certain
ingress–egress pairs having more offered traffic. Also, it does
not permit the protection of certain ingress–egress pairs from
having their available capacities being reduced too much by
traffic traversing between other ingress–egress pairs. Minimum
interference routing takes these factors into account when deter-
mining the path for the current demand. The primary application
of minimum interference routing is in explicit routing of LSPs in
MPLS networks. Another application is for routing wavelength
paths in dynamically provisionable optical networks provided
wavelength conversion is permitted at each node. We showed
by simulations on three networks that minimum interference
routing has very good LSP acceptance and rerouting perfor-
mance in comparison to min-hop and WSP, which do not take
the ingress–egress information into account. The difference in
performance spans a wide variety of operating conditions. We
also showed that most LSP routes can be computed using only
a shortest-path computation, and that frequent determination of
critical links is not necessary to ensure good performance. An
immediate extension to this work is the incorporation of pri-
orities. Another topic for future study is aggregation for inter-
domain routing. The max-flow values between ingress–egress
pairs calculated by the algorithm can be used as a measure of
available bandwidth for aggregation.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin,Network Flows: Theory,
Algorithms, and Applications. Englewood Cliffs, NJ: Prentice-Hall,
1993.

[2] D. O. Awduche, L. Berger, D. Gan, T. Li, G. Swallow, and V. Srinivasan,
“Extensions to RSVP for LSP tunnels,” Internet Draft draft-ietf-mpls-
rsvp-lsp-tunnel-04.txt, Sept. 1999.

[3] D. O. Awduche, J. Malcom, J. Agogbua, M. O’D` ell, and J. McManus,
“Requirements for traffic engineering over MPLS,” RFC 2702, Sept.
1999.

[4] R. Callon, N. Feldman, A. Fredette, G. Swallow, and A. Viswanathan,
“A framework for multiprotocol label switching,” Internet Draft draft-
ietf-mpls-framework-03.txt, June 1999.

[5] “Ancestor tree for arbitrary multi-terminal cut functions,” inProc. Conf.
Integer Programming Combinatorial Optimization, 1990.

[6] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable
and multicommodity flow problems,”SIAM J. Computing, vol. 5, pp.
691–703, 1976.

[7] H. Frank and I. T. Frisch,Communication, Transmission, and Trans-
portation Networks. Reading, MA: Addison-Wesley, 1971.

[8] A. V. Goldberg and R. E. Tarjan, “Solving minimum cost flow problem
by successive approximation,” inProc. 19th ACM Symp. Theory Com-
puting, 1987, pp. 7–18.

[9] R. E. Gomory and T. C. Hu, “Multi-terminal network flows,”J. SIAM,
vol. 9, pp. 551–570, 1961.

[10] R. Guerin, D. Williams, A. Przygienda, S. Kamat, and A. Orda,
“QoS routing mechanisms and OSPF extensions,” Internet Draft
draft-guerin-qos-routing-ospf-04.txt, Dec. 1998.

[11] R. Guerin, D. Williams, and A. Orda, “QoS routing mechanisms and
OSPF extensions,” inProc. Globecom, 1997.

[12] M. Kodialam and T. V. Lakshman, “On-line routing of guaranteed
bandwidth tunnels,” inProc. 7th IFIP Workshop Performance Modeling
Evaluation ATM/IP Networks, June 1999.

[13] D. Katz and D. Yeung, “Traffic engineering extensions to OSPF,” work
in progress, Internet Draft, 1999.

[14] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol
label switching architecture,” work in progress, Internet Draft
draft-ietf-mpls-arch-02.txt, July 1998.

[15] H. Smit and T. Li, “IS-IS extensions for traffic engineering,” work in
progress, Internet Draft, 1999.

[16] S. Plotkin, “Competitive routing of virtual circuits in ATM networks,”
IEEE J. Select. Areas Commun., Special Issue Advances Fundamentals
Networking, pp. 1128–1136, 1995.

Koushik Kar received the B.Tech. degree in elec-
trical engineering from the Indian Institute of Tech-
nology, Kanpur, India, in 1997, and the M.S. degree
in electrical and computer engineering from the Uni-
versity of Maryland, College Park, in 1999, where he
is currently working towards the Ph.D. degree.

His research interests include scheduling in
high-speed switches, routing and congestion control,
and fairness and pricing issues in communication
networks.

Murali Kodialam (M’99) received the Ph.D. degree
in operations research from Massachusetts Institute
of Technology in 1991.

He has been working at Bell Labs. since October
1991. He is currently in the Performance Analysis
Department where he works on resource alloca-
tion and performance of communication systems
including routing in MPLS systems, topoplogy con-
struction, and routing in ad hoc wireless networks,
and reliable routing in optical networks.

Dr. Kodialam is a member of INFORMS.

T. V. Lakshman (S’84–M’85–SM’98) received the
Ph.D. degree in computer science from the University
of Maryland, College Park; and the Master’s degree
from the Department of Physics, Indian Institute of
Science, Bangalore, India.

He is currently a Director in Bell Labs. Research.
Previously, he was at Bellcore, where he was most
recently a Senior Research Scientist and Technical
Project Manager in the Information Networking
Research Laboratory. His recent research has been
in issues related to traffic characterization and

provision of quality of service, architectures and algorithms for gigabit IP
routers, end-to-end flow control in high-speed networks, traffic shaping and
policing, switch scheduling, routing in MPLS, and optical networks.

Dr. Lakshman is a corecipient of the 1995 ACM Sigmetrics/Performance
Conference Outstanding Paper Award, and the IEEE Communications Society
1999 Fred. W. Ellersick Prize Paper Award. He is an Editor of the IEEE/ACM
TRANSACTIONS ONNETWORKING.

