Final Exam Winter 1998 CS3970

NAME ____________________________

Code Name ________________________________

(Code Name should be something you’ll remember,

so when I email final exam grades and overall course

grades, you can find your grade among the heathen)

1. Read All the Rules before Starting.

2. Plan your time carefully. Each question is worth 3 points. You must turn in the exam at the end of the two hours to be fair to everyone.

4. Open notes, open book, and not open neighbor. However, looking everything up will likely cause you to not have enough time for the exam. Write something down as an answer and then go back and check it later! Erasures leave nothing to grade; lineouts do. As always, blank answers are zero partial credit…

5. If you think something is missing from a question, then use your best judgment. Write down your assumptions or interpretation of the question, and continue.

6. A sketch often helps explain the answer.

7. Good luck!

Abstraction Concepts

1. FW98 (3 points) What is the Object-Oriented Programming concept of abstraction?

What does the USE Clause do? Explain whether you think the USE Clause helps or hurts the use of Abstraction in programming.

Packages and Private Types

2. FW98 (3 points) Explain how Ada Packages support OOP concepts of encapsulation and information hiding.

Inheritance & Polymorphism

3. FW98 (3 points) Explain the meaning and use of the Ada keyword TAGGED as it relates to inheritance.

4. FW98 (3 points) Explain Dispatching (also called Late or Dynamic Binding)

The method of dynamically determining and calling the appropriate subprogram (procedure or function) at run time is called Dispatching, or Late Binding. The choice of subprogram unit to be called depends upon the parameter Type, determined by a hidden record component called a Tag. This allows subprograms to be written without knowing all the specific types to which they will be applied.

5 - 24. FW98 (3 points each) Given the following packages:

PACKAGE Air_Pursuit_Pkg IS

 TYPE Aircraft IS TAGGED RECORD

 Name: String (1..4);

Fuel: Float;

 END RECORD;

 PROCEDURE Pursue (A1 : Aircraft; A2 : Aircraft);

 PROCEDURE Evade (A1 : Aircraft'Class; A2 : Aircraft'Class);

 TYPE Fighter IS NEW Aircraft WITH RECORD

 Num_Missiles : Natural;

 END RECORD;

 TYPE Bomber IS NEW Aircraft WITH RECORD

 Num_Bombs: Natural;

 END RECORD;

END Air_Pursuit_Pkg ;

WITH Ada.Text_IO;

PACKAGE BODY Air_Pursuit_Pkg IS

 PROCEDURE Pursue (A1 : Aircraft; A2 : Aircraft) IS

 BEGIN -- Pursue

 Ada.Text_IO.Put_Line(A1.Name & " pursues " & A2.Name);

 END Pursue;

 PROCEDURE Evade (A1 : Aircraft'Class; A2 : Aircraft'Class) IS

 BEGIN -- Evade

 Ada.Text_IO.Put_Line(A1.Name & " evades " & A2.Name);

 END Evade;

END Air_Pursuit_Pkg ;

WITH Air_Pursuit_Pkg; USE Air_Pursuit_Pkg;

PROCEDURE Pursue_Evade_Pkg IS

-- YES, these ALL work fine

 F14 : Fighter := Fighter'("F14 ", 10_000.0, 4);

 F18 : Fighter := Fighter'("F18 ", 10_000.0, 4);

 B1 : Bomber := Bomber'("B1 ", 80_000.0, 80);

 B52 : Bomber := Bomber'("B52 ", 80_000.0, 80);

 X1 : Aircraft'Class := Fighter'("X1 ", 10_000.0, 4);

 X2 : Aircraft'Class := Fighter'("X2 ", 10_000.0, 4);

 X3 : Aircraft'Class := Bomber'("X3 ", 80_000.0, 80);

 X4 : Aircraft'Class := Bomber'("X4 ", 180_000.0, 120);

BEGIN -- Pursue_Evade_Pkg

-- DO THESE?

 Pursue (B1, B52); -- Question 5

 Pursue (F14, F18); -- Question 6

 Pursue (F14, B1); -- Question 7

 Pursue (F14, X1); -- Question 8

 Pursue (F14, X3); -- Question 9

 Pursue (X1, F18); -- Question 10

 Pursue (X1, B1); -- Question 11

 Pursue (X1, X2); -- Question 12

 Pursue (X1, X3); -- Question 13

 Evade (B1, B52); -- Question 14

 Evade (F14, F18); -- Question 15

 Evade (F14, B1); -- Question 16

 Evade (F14, X1); -- Question 17

 Evade (F14, X3); -- Question 18

 Evade (X1, F18); -- Question 19

 Evade (X1, B1); -- Question 20

 Evade (X1, X2); -- Question 21

 Evade (X1, X3); -- Question 22

END Pursue_Evade_Pkg;

For Questions 5 - 22 circle whether the statement is legal or illegal. If it is Illegal, STATE WHY IT IS ILLEGAL, and whether it is a compile-time or run-time error.

 5. Pursue (B1, B52); Legal Illegal

 6. Pursue (F14, F18); Legal Illegal

 7. Pursue (F14, B1); Legal Illegal
-- compile time parameter mismatch

 8. Pursue (F14, X1); Legal Illegal
-- compile time parameter mismatch
 9. Pursue (F14, X3); Legal Illegal
-- compile time parameter mismatch

10. Pursue (X1, F18); Legal Illegal
-- compile time parameter mismatch

11. Pursue (X1, B1); Legal Illegal
-- compile time parameter mismatch
12. Pursue (X1, X2); Legal Illegal

13. Pursue (X1, X3); Legal Illegal
-- run time constraint error
14. Evade (B1, B52); Legal Illegal

15. Evade (F14, F18); Legal Illegal

16. Evade (F14, B1); Legal Illegal

17. Evade (F14, X1); Legal Illegal

18. Evade (F14, X3); Legal Illegal

19. Evade (X1, F18); Legal Illegal

20. Evade (X1, B1); Legal Illegal

21. Evade (X1, X2); Legal Illegal

22. Evade (X1, X3); Legal Illegal

23. FW98 (3 points) Can I overload the Pursue Function for Fighters? Why or Why not?

24. FW98 (3 points) Can I overload the Evade Function for Fighters? Why or Why not?

Child Units

Given the following Parent-Child Hierarchy used in the war game simulation:

Mil_Veh_Pkg

Mil_Veh_Pkg.Air_Veh_Pkg

Mil_Veh_Pkg.Land_Veh_Pkg

Mil_Veh_Pkg.Sea_Veh_Pkg

Mil_Veh_Pkg.Air_Veh_Pkg.Fighter_Pkg

Mil_Veh_Pkg.Air_Veh_Pkg.Helo_Pkg

Mil_Veh_Pkg.Air_Veh_Pkg.Bomber_Pkg

Mil_Veh_Pkg.Land_Veh_Pkg.Tank_Pkg

Mil_Veh_Pkg.Land_Veh_Pkg.Truck_Pkg

Mil_Veh_Pkg.Sea_Veh_Pkg.Carrier_Pkg

Mil_Veh_Pkg.Sea_Veh_Pkg.Destroyer_Pkg

Mil_Veh_Pkg.Sea_Veh_Pkg.Submarine_Pkg

Mil_Veh_Pkg.Constructor_Pkg

25. FW98 (3 points) If you add a new child package (spec and body) to Mil_Veh_Pkg, called Space_Veh_Pkg, what files (specs or bodies) need to be recompiled and why?

OOP

26. FW98 (3 points) In object oriented programming, what do you gain by passing the object (Ptr1.ALL) rather than pointer to the object (Ptr1) as parameters to subprograms? What (if any) tradeoff is there for doing so?

27. FW98 (3 points) Explain the difference between dispatching operations and class-wide operations.

Generics

28. FW98 (3 points) Write the instantiation of a Binary_Search_Tree package from the generic that would allow you to use pointers to military vehicle types as the data in the tree’s nodes. The search tree should be ordered using the military vehicle’s NATO_Name_Type, defined as a string of 15 characters. (Assume each value for the NATO_Name field will now include a number to make it unique for use as a key field, as in BACKFIRE-01 or WELLINGTON-10)

Use the portion of a generic specification for a Binary Search Tree and the package specification for Mil_Veh_Pkg that are provided on the next pages to assist you. (HINT: “<” is already defined for Strings)

WITH ___________;

WITH ___________;

PACKAGE MV_BST_Pkg IS _________________________________

WITH Mil_Veh_Pkg;

WITH BST_Generic_Pkg;

PACKAGE MV_BST_Pkg IS NEW BST_Generic_Pkg

 (Tree_Element_Type => Mil_Veh_Pkg.Mil_Veh_Ptr_Type,

 Key_Type => Mil_Veh_Pkg.NATO_Name_Type,

 Key_Of => Mil_Veh_Pkg.Key_Of);

-- The package specification for BST_Generic_Pkg

GENERIC

 TYPE Tree_Element_Type IS PRIVATE;

 TYPE Key_Type IS PRIVATE;

 WITH FUNCTION Key_Of (Item: Tree_Element_Type) RETURN Key_Type IS <>;

 WITH FUNCTION "<" (Key1, Key2: Key_Type) RETURN Boolean IS <>;

PACKAGE BST_Generic_Pkg IS

 -- some stuff deleted

END BST_Generic_Pkg;

-- The package specification for Mil_Veh_Pkg

PACKAGE Mil_Veh_Pkg IS

-- some stuff deleted

 --

 --| PROCEDURE Set_Detected

 --| Pre : MV is of Mil_Veh_Type and contains data

 --| Post : Sets the detected field to TRUE

 --| Parameters : MV is of Mil_Veh_Type

 --| Complexity : O(1)

 --

 PROCEDURE Set_Detected (MV : IN OUT Mil_Veh_Ptr_Type);

 --

 --| FUNCTION Key_Of

 --| Pre : MV_Ptr is defined.

 --| Returned Value: Vehicle's NATO_Name field

 --| - a string of 15 characters like "Flanker15 "

 --| Parameters : Item is a pointer to a military vehicle.

 --| Description : Extracts NATO_Name info from a vehicle object.

 --| Complexity : O(1)

 --

 FUNCTION Key_Of (MV_Ptr: Mil_Veh_Ptr_Type) RETURN NATO_Name_Type;

-- some stuff deleted

PRIVATE

 TYPE Mil_Veh_Type IS TAGGED RECORD --Basis for Hierarchy

 --| The following reflects a change in the spec from the group effort

 Veh : String(1..10) := "Unknown ";

 Nato_Name : Nato_Name_Type := "Unknown ";

 IFF : IFF_Type := Unknown;

 Status : Status_Type := FMC;

 Damage : World_Info_Pkg.Damage_Type := 0;

 Detected : Boolean := False;

 Fuel : World_Info_Pkg.Fuel_Type := 0;

 Start_Psn : XYZ_Type;

 Vel : XYZ_Vel_Type;

 Accel : XYZ_Accel_Type;

 Cur_Psn : XYZ_Type;

 END RECORD;

END Mil_Veh_Pkg;

29. FW98 (3 points) Write the instantiation of the generic Traverse_LNR procedure below that would allow you to reset the detected status of all vehicles in the tree to TRUE. Assume your instantiated procedure, called Traverse_And_Reset_Detected, will be in some package included in the project, such as Sim_Pkg.

-- in the context clause section

WITH _________________________________;

WITH _________________________________;

-- in the execution section

PROCEDURE Traverse_And_Reset_Detected IS

WITH Mil_Veh_Pkg;

WITH MV_BST_Pkg;

PROCEDURE Traverse_And_Reset_Detected IS NEW

 MV_BST_Pkg.Traverse_LNR (Visit => Mil_Veh_Pkg.Set_Detected);

NOTE: The below version of the Generic Traverse_LNR is part of the BST_Generic_Pkg, and when BST_Generic_Pkg was instantiated above for Military Vehicle pointer types, the following substitutions were made:

Mil_Veh_Ptr_Type replaced Tree_Element_Type

--| PROCEDURE Traverse_LNR

--| Pre : BST1, Visit procedure are defined.

--| Post : Visit performed on each node.

--| Parameters : BST1 is a pointer to a BST,

--| Visit is a user-specified procedure to perform on each

--| node of the BST.

--| Description: Traverses the BST performing on each node whatever

--| function is dictated by procedure Visit.

--|

--| Complexity : O(n)

 GENERIC

 WITH PROCEDURE Visit (Tree_Element: IN OUT Tree_Element_Type);

 PROCEDURE Traverse_LNR (BST1: IN OUT Tree_Ptr_Type);

Numeric Types

30. FW98 (3 points) You want to write an integer type called Distance_Type that accepts numbers between 0 and 4 Million, and to be portable with any machine that can run Ada. What is the safe type declaration for Distance_Type?

TYPE Distance_Type IS RANGE 0..4E6;
Write the following type declarations in Ada code:

31. FW98 (3 points) Money_Type (for a bank system able to handle up to $100 million)

TYPE Money_Type IS DELTA 0.01 DIGITS 11;

-- digits 11 means 2 for the cents and 9 for the

-- dollars, so 100,000,000.00 can be handled
32. FW98 (3 points) Small_Angles_Type (precision to 13 digits)

TYPE Small_Angles_Type IS DIGITS 13;
Tasking

33. FW98 (3 points) Explain how you can control the timing of tasks using the entry and accept mechanisms of Ada tasks.

13 of 13

CDR Holden

