CS2970 / CS3970 / CS3300 /CS3770 Ada95 Style Guide
Computer Science Department, Naval Postgraduate School
The purpose of the style guide is not to restrict your programming, but rather to establish a consistent format for your programs. This will help you debug and maintain your programs, and help others (including your instructor) to understand them. In the long run, this will help you, since one focus of these courses is to build a foundation for later courses. Finally, this guide is loosely based on the formal style guide produced by the Software Productivity Consortium under the direction of the DoD Ada Joint Program Office (AJPO), so you might encounter other programs in your long and varied career that display a similar look and feel. The complete Ada Quality and Style Guide is available via the World-Wide Web at URL:
http://sw-eng.falls-church.va.us/adaic/docs/style-guide/95style/html/cover.html
1.0 Visual Layout
You should format your program making use of page boundaries and blank lines to separate code groups, functions and groups of logically related blocks. As a general guideline, no block should be longer than one page, and formatting should ensure that it prints out on one page if possible. It is generally better to have some blank space at the end of a page than to start a code block and run it over onto the next page. There are exceptions.
Output from a program should be both informative and professionally formatted. A person reading the output display or script should be able to determine whether the program works reasonably just by seeing the output, without knowing the internal details of the program. Similarly, the main program driver code should clearly and concisely show a smooth logic flow so the first-time reader will be able to determine easily what the program does.
A printed page should be no more than 72 columns and 60 lines (12 point font). With Ada it is very easy to continue on to the next line.
1.1 Indentation and “Whitespace”
Indentation is used to highlight the block structure of the code and should be used consistently. The proper use of whitespace and indentation makes the structure of the program evident from the layout of the code. You must use proper indentation, which in these classes is three spaces. Use spaces rather than tabs, because printers and monitors usually have different tab spacing.
“Vertical whitespace” is the use of blank lines to help set off blocks of code and increase readability of the program. Code with no vertical whitespace is hard to follow.
No line of code should exceed 72 characters (including blanks).
You can make exceptions to the indentation rules when readability of the code is improved.
An example follows:
PROCEDURE Initialize_Battlefield
 	(Active_List : IN OUT MVDLL_Pkg.List_Type;
 Hostile_List : IN OUT MVDLL_Pkg.List_Type;
 	 Friendly_List : IN OUT MVDLL_Pkg.List_Type;
 Sim_Data : IN Sim_Data_Type;
 Commanders : OUT Commander_Type) IS

BEGIN -- Initialize_Battlefield

 -- much code left out for clarity here

END Initialize_Battlefield;

1.2 Comments
Comments should be indented consistently with the block of code they describe. Comments can be divided into two general categories, strategic and tactical.
Strategic comments are used to give the reader a general overview of what is going on. These comments appear at the top of the files and at the top of files, functions, procedures, packages, and other blocks of code. Strategic comments tend to be written in sentences with an emphasis on explaining the big picture of what the block of code is designed to do.
Tactical comments are designed to explain tricky areas of code, what parameters do, and hints about the control flow of the program. These comments should be intermixed in the code when needed. They should be shorter and in bullet format, and may be in inline format
If you use sensible and informative naming, block structure, indentation, and straightforward programming, your code will be mostly self documenting. This is what you should strive for. Keep comments simple. Do not attempt to explain what is obvious from the code itself.
Numerical constants must have a comment explaining the value if it is not evident by name.
1.2.1 FILE HEADERS
Each file must have a descriptive comment header block at the beginning as follows:
--
--| Filename	:___________.ad* 	<name of this file>
--| Author	:______________ 	<your name>
--| Date		:______________
--| Course	:______________
--| Project #	:______________
--| Compiler	:______________
--| Description	:______________ 	<Brief description of the program, could be several lines long >
--
1.2.2 HEADER COMMENTS -- FUNCTION, PROCEDURE & PACKAGE SPECIFICATIONS
Each function, procedure, and package specification must have an appropriate “comment header” giving a brief description using the following format with set-off lines as shown in the following example:
Avoid declaring variables in package specifications.
Place information required by the user of the program unit in the specification header.
Do not repeat information (except unit name) in the specification header that is present in the specification.
In the specification header, explain what the unit does, not how or why it does it.
Describe the complete interface to the block, including any exceptions it can raise.
Describe the Big-O performance characteristics of the unit.

<two blank lines>

--| PACKAGE, PROCEDURE, FUNCTION What_Procedure_Does (The name of the Package/Procedure/Function)
--| Pre		: (situation prior to beginning of the block)
--| Post		: (situation after block ends)
--| Exceptions Raised: (What exceptions might be raised within this block that a client must handle) [leave off if none]
--| Return Value	: (If block is a function, what it returns) [leave off if NA]
--| Parameters	: (If parameters are used, briefly describe them)
--| Complexity	: O(?) (Big-O performance characteristics)
--
<one blank line>
PROCEDURE What_Procedure_Does (Parameter1 : IN OUT Some_Type) IS
BEGIN -- What_Procedure_Does
-- indent the nested block
IF (Parameter1 > MAX_VALUE) THEN
 Parameter1:= MAX_VALUE; -- indented 2 or 3 spaces
END IF; -- aligned with statement beginning the block
END What_Procedure_Does;
1.2.3 HEADER COMMENTS -- FUNCTION, PROCEDURE & PACKAGE BODIES
Each function, procedure, and package body also must have an appropriate “comment header” giving a brief description explaining how and why the unit performs its function, not what it does.
Place information required by the maintainer of the program unit in the body header.
Repeat the unit name in a comment to mark the BEGIN of a package body, subprogram body, task body, or block if the begin is preceded by declarations. (BEGIN – Get_File_Data)
Do not repeat information (except the unit name) in the header that is readily apparent from reading the code.
Do not repeat information (except the unit name) in the body header that is available in the specification header.
2.0 Naming
Variables must have meaningful names/identifiers. This must be balanced against using names which are too long, which can obscure the code. (Twenty or so characters is approaching the “too long” limit.)
Single letter variables or constants should not be used. The exception is when it is a really common practice to identify some thing with a single letter. An example of this is the coordinate system (X, Y, and Z).
An identifier consisting of multiple names shall have each name distinguished by making the first letter of each name part upper case (e.g. RedCarColor), or by using underscores between parts (e.g. red_car_color). Whatever you choose, STAY CONSISTENT!
Do not use the lower case letter `L’, or the letter `O’ in names unless they are part of normal words. This is to avoid confusion with the numbers 1 and 0.
User-defined types should have a trailing “Type”, and access types a trailing “Ptr” or “Pointer” to help identify them. Enumerations have a trailing “Enum”. List_Type, List_Ptr & List_Enum are good Type, Pointer and Enumeration type names for Lists.
Avoid names that differ only in case, look similar, or differ only slightly. For example, InputData, InData and DataInput will certainly be confusing if used in the same program.
Names of Procedures should reflect what they do (Print_Array). Function names should reflect what they return (Get_Satellite_Number).
3.0 Global Variables
For the most part, using global variables is poor programming. However, there are certain rare cases when global variables might be used. All use of global variables must be fully documented and justified.
4.0 Files
Each source file, whether stand-alone, specification or body, must include all the necessary information to support its independent compilation.
Do not add additional dependencies. Each file must include only the necessary information to support independent compilation. Do not “with” in the universe to see if that might help.
All Ada source files will have a “.ada” “.ads” or “.adb” extension.
All spec files will have a “.ads” extension, and package body files will have a “.adb” extension.

If you open a data file for reading/writing, close the file as soon as you are done reading/writing to it. Minimize multiple file opening/resets/closing if it can reasonably be avoided, as disk access times can be time-intensive and prone to failures. Avoid using absolute path addressing when referring to data files unless referring to a file on the floppy disk drive. Use relative addressing based upon the location of the executable if possible.
�5.0 Miscellaneous Important Stuff
Always use the most appropriate operator or construct for the work you want it to do. Good design and clarity take precedence over optimization. Do not declare or use more variables than are necessary.
Always use the principle of least privilege (grant only that access necessary to do the desired work and no more).
Numerical constants ("magic numbers") must not be coded directly. The only allowable exceptions are for 0, 1 or -1, and those which are not "likely" to change; one example is code determining if a number is even can use the number "2" since it would not be likely to change.
Enumeration types should be used to declare constants that have a short discrete set of values.
You must test floating point numbers with <= or >=. Never use exact comparisons with floating point numbers, even when comparing to 0.0. The appropriate means of comparison is to define a value (in engineering lingo, “epsilon”) that represents the maximum difference two values may differ and be considered equal.
If you use any public domain or shareware code, or code from one of the textbooks, there are two requirements: First, you must credit the source in the header block and be specific as to where it comes from. Second, if it is going into your program, you MUST understand it completely. If you cannot explain what it is doing, then it does NOT go into a program that you turn in for grading. If asked to explain it and you cannot do so to the instructor’s satisfaction, you will not get credit for it and will have your grade adjusted accordingly. The goal is to have you understand what is going on in the program.
You should test your code. It should produce the correct results for normal test conditions as well as boundary conditions like short or empty lists.
If you allocate memory, you must deallocate it and, if the memory was allocated to a pointer, ground the pointer to NULL.
When including library files, ensure you briefly comment on the reason for including each of them.
DO NOT modify project specifications without explicit permission from your customer (the instructor)!
Even if you think you have explicit permission to modify project specifications, modifications from the written assignment provided must be clearly and completely documented in your code and in your README.txt file.
6.0 Project Guidance: Preferred ordering of hard copy
Readme.txt	-- A text file explaining how to run your program
Answers.txt	-- A text file providing answers to questions asked as part of the program assignment
Testplan.txt	-- A text file explaining what testing you performed on your program, including data used and description of the ranges of valid types and the anticipated exceptions you handled
Output Script	-- A text file of the captured output of your program
Code files	-- Your actual Ada source code, in the following order:
Main Driver Program
Spec 1
Body 1
Spec2
Body2
…
Spec N
Body N
Disk	In addition to the hard copy above, a floppy 3.5-inch diskette with the above files on it is required.

Last Revised: 27 January 1997

