
I A n ews l e t t e r • Vo l . 5 , No . 1 , S p r i n g 02 http://iac.dtic.mil/iatac

Some information systems
are critical to defend

against malicious attack. Yet
they often rely on just the same
countermeasures as any sys-
tem—firewalls, authentication,
intrusion detection systems,
and encryption—although po-
litically motivated attackers
may be far more determined
than hackers to bring them
down. Future information secu-
rity will increasingly use ideas
from military defensive tactics3

to effectively defend critical in-
formation systems. This will in-
clude automatic “counterintelli-
gence” with deliberately
deceptive behavior, what we
call “software decoys.” Decoys
can deceive attackers into
thinking their attacks have suc-
ceeded while protecting key as-
sets at least temporarily.

Much good work has been
done on intrusion detection
systems,8, 11 but only recently
has there been corresponding
work on how an attacked sys-
tem should respond. Many re-
spond to serious attacks by
turning off the network con-
nection, a high cost in today’s
networked world. Such a re-
sponse tells the attacker they
have been detected and this
may just direct them to better
targets. Moreover, defenders
lose information about how the
attack would have proceeded
which they could have used to
make defense more effective.

A cyber-attack is an attack on
resources to gain tactical or

strategic advantage just as in
regular warfare. Deceptive re-
sponses can be automated
much like the attacks. Such re-
sponses can be very effective
because attackers depend on
the honesty of the computer
systems they attack. Deception
can confuse their planning or
frustrate them for a while with-
out giving away our recognition
that we are being attacked. This
could be especially important
during intensive information
warfare when terrorists at-
tempt to bring down critical
systems in a short period of
time: Delay permits time to an-
alyze the attack and plan a re-
sponse. Deception also allows
us to turn an attacker’s own
strengths of patience and deter-
mination against them, much
as Asian martial arts like Akido
do with physical attacks.

The Concept of a
Software Decoy

We have been researching
“intelligent software decoys”9.
We use this term to cover a
spectrum of deceptive defen-
sive activity1. This can range
from mimicking normal behav-
ior of the computer system (as
when an attacker thinks they
have gained system administra-
tor privileges and we pretend
they can modify key directo-
ries), through inventing appeal-
ing activities for the attacker
(as when an attacker overflows
a buffer and we pretend they
have changed the behavior of

the operating system), to new
facilities (as when an attacker
gets clues to a trap site with ap-
parently vulnerable software).
Appropriate deceptive tactics
depend on the value of the re-
sources being protected and
the danger of the attack. But
the general idea is to limit or
confine7 attacks that get
through our first line of defense
rather than stop attacks. De-
coys differ from honeypots4 in
providing defense, not data.

Decoys are easiest to make
when simple effects (like de-
nial-of-service) are sought by at-
tackers. They will generally
work best against hands-on ad-
versaries as opposed to auto-
mated scripts, though unpre-
dictable responses by a decoy
could well foil a script. Effective
decoys need not be complex.
Simple ploys in warfare can be
surprisingly effective when
their timing is right, they are
consistent with enemy expecta-
tions, and they have some cre-
ativity.

Decoying capabilities should
be distributed through an oper-
ating system and applications
programs to provide a uniform
front to attackers with no single
point of compromise. They
could go in Web servers, mail
servers, and file-transfer utili-
ties to address denial-of-service
attacks and attempts to jump
into the operating system.
They could go in directory-list-
ing capabilities to provide false
information about sensitive di-

10

by Dr. N
eil C. Row

e, Dr. J. Bret M
ichael, Dr. M

ikhail Auguston, and M
r. Richard Riehle

http://iac.dtic.mil/iatac I A n ews l e t t e r • Vo l . 5 , No . 1 , S p r i n g 02

rectories. They could also go in
network routers to address de-
nial of service and suspicious
patterns (like strings of nulls)
with connection errors. More
ambitious decoys could be em-
bedded in all file-writing capa-
bilities or all security-related
activities of the operating sys-
tem, through the use of “wrap-
per” technology that automati-
cally inserts checking code
around sensitive statements
(“instruments” it).9 While this
may sound ambitious, an anal-
ogous technology exists for in-
strumenting code to calculate
software metrics and monitor
software at runtime, and such
instrumentation has been suc-
cessfully accomplished for
large software systems—it is
not hard for simple open-
source operating systems like
those for small devices.

We can distinguish levels of
decoying. At the simplest level
are memoryless decoys that re-
spond the same way to the
same local context. A behavior
model based on an “event gram-
mar” can operate on the system
log to detect suspicious local
context. It can use sophisticated
ideas from the field of temporal
logic. Creativity of decoy re-
sponses can be done with gen-
erative grammars having ran-
dom choices. For instance, we
have written generators for fake
error messages (like “Error at
2849271: Segmentation fault”)
and for fake directory listings
(with fake file names, dates,
sizes, and subdirectories).

At one level, a decoy can re-
member other invocations of
the same code. For instance, a
server can store details of other
transactions it has serviced so
that it can recognize denial-of-
service attacks. At another
level, decoys in different soft-

ware modules can share infor-
mation about an attack, as
when an attacker installs their
own operating system. Finally
at the highest level, a decoy can
simulate the entire operating
system itself within a “sandbox”
or safe environment. This
would be helpful when Trojan
horses of unknown capabilities
have been inserted into an op-
erating system and the decoy
must simulate them.2 The high-
er levels of decoying require an
architecture of response man-
agement.6

Types of Software
Decoy Responses

A generally useful decoy tac-
tic is the exaggeration of in-
tended attacker effects: Good
deceptions should confirm pre-
conceptions of the deceived.
Under a denial-of-service at-
tack, for instance, we can pre-
tend to increase the load on a
computer system by deliberate-
ly delaying system responses.
This can be done by calculating
and implementing delays, ac-
complished by additional
process-suspension time, into
the servicing of attacker trans-
actions,10 with perhaps addi-
tional scripted interaction with
the attacker.

An important factor in this is
the probability that we are
under attack. Unfortunately,
new vulnerabilities and new
techniques for exploiting those
vulnerabilities are constantly
being discovered. Recent hack-
er behavior shows an increas-
ing automation of attacks, in-
creasing use of rootkits,
decreasing use of probes, and
an increasing use of encryption
for network communication.4

But a determined adversary
like a terrorist group will want
to try new methods we have

not anticipated. We must then
use general principles to esti-
mate the probability we are
under attack, and respond pro-
portionately to this probability.
We can use current intrusion
detection methods for this,
both anomaly and misuse de-
tection, but an especially help-
ful clue we are investigating
are reports from similar sites
about attacks that they are un-
dergoing.5 Automatic data min-
ing from system logs can be
helpful at those sites to analyze
how they were attacked.

Decoy delays can be accom-
plished by process-suspension
time alone, but alternatives can
make the deception more inter-
esting and engaging to the at-
tacker. Many attackers see their
activities as like playing a com-
puter game, so some game-like
behavior in the decoy could be
helpful, as could “showman-
ship.”1 This could involve user
interactions such as requests for
authorization, requests to con-
firm allocation of more system
resources like memory, deliber-
ate errors, and invocation of
new scripts pretending to be
system-administrator tools—we
can get creative.

Responses of software decoys
must necessarily vary with re-
sources available to fight the at-
tack. Consider denial-of-service
decoys for transaction servers.
Delay exaggeration is only effec-
tive below a certain system load,
because good deception requires
that we still process the transac-
tions albeit more slowly. If the
attack intensity continues to in-
crease, we could systematically
simplify transactions, without
telling users, by ignoring less im-
portant parts of the input. Or we
could respond to a transaction
with a cached result of a similar
transaction, an effective idea for

11

I A n ews l e t t e r • Vo l . 5 , No . 1 , S p r i n g 02 http://iac.dtic.mil/iatac

denial-of-service attacks doing
the same transaction repeatedly.

If the attack intensity contin-
ues to grow, the system has no
choice but to refuse transac-
tions. However, we may still
fool an attacker if we substitute
a low-resource interaction that
could conceivably result from a
successful attack. For instance,
we could say “Buffer overflow”
and start what appears to be a
debugger with “Stopped at line
368802 of module serv89—sin-
glestep?” Or we could claim
memory needs to be reallocat-
ed due to the high system load,
and give the attacker a fake op-
portunity to change module
memory requirements. Eventu-
ally however, if attack intensity
continues to increase we must
turn off the network connec-
tion and terminate the game
with the attacker.

Attackers will eventually rec-
ognize decoys, and will plot
countermeasures such as ignor-
ing sites with recognizable
decoy “signatures.” But we can
plot to counter the counter-
measures, and so on. The clas-
sic field of game theory pro-
vides methods to analyze such
situations and find our best
overall strategy.

Endnotes
1. Bell, J. B., & Whaley, B., Cheating

and Deception, New Brunswick,
NJ, St. Martin’s Press, 1991.

2. Bressoud, T. & Schneider, F. B.,
“Hypervisor-based Fault-tolerance.
ACM Transactions on Computer
Systems,” Vol. 14, No. 1, pp.
80–107, Feb. 1996.

3. Fowler, C. A., & Nesbit, R. F.,
“Tactical deception in air-land
warfare,” Journal of Electronic
Defense, Vol. 18, No. 6, pp. 37–44
& 76–79, June 1995).

4. The Honeynet Project, Know Your
Enemy, Boston, Addison-Wesley,
2002.

5. Ingram, D., Kremer, H., & Rowe,
N., “Distributed Intrusion
Detection for Computer Systems

Using Communicating Agents,”
Proceedings from the 6th
International Symposium on
Research and Technology on
Command and Control, Annapolis,
MD, June 2001.

6. Lewandowski, S., Van Hook, D.,
O’Leary, G., Haines, J., & Rossey,
L., SARA: “Survivable Autonomic
Response Architecture,”
Proceedings from DARPA
Information Survivability
Conference, Anaheim CA, June
2001, Vol. 1, pp. 77–88.

7. Liu, P. & Jajodia, S., “Multi-phase
Damage Confinement in Database
Systems for Intrusion Tolerance,”
Proceedings from the 14th Computer
Security Foundations Workshop,
Cape Breton, NS, pp. 191–205,
June 2001.

8. Lunt, T. F., “A Survey of Intrusion
Detection Techniques,” Computer
and Security, Vol. 12, No. 4, pp.
405–418, June 1993.

9. Michael, B., Auguston, M., Rowe,
N., & Riehle, R., “Software
Decoys: Intrusion Detection and
Countermeasures,” Proceedings
from the 2002 Workshop on
Information Assurance, West Point,
NY, June 2002.

10. Somayaji, A., & Forrest, S.,
“Automated Response Using
System-call Delays,” Proceedings
from the 9th USENIX Security
Symposium, pp. 185–197, August
2000.

11. Vigna, G. & Kemmerer, R. A.,
“NetSTAT: A Network-based
Intrusion Detection Approach,”
Proceedings from the 14th Annual
Computer Security Applications
Conference, Scottsdale, AZ, pp.
25–34, December 1998.

Biographies

Dr. Neil C. Rowe is Professor and
Associate Chair of Computer Science at
the U.S. Naval Postgraduate School
where he has been since 1983. He has a
Ph.D. in Computer Science from Stanford
University (1983), and E.E. (1978), S.M.
(1978), and S.B. (1975) degrees from the
Massachusetts Institute of Technology.
He has done research on intelligent
access to multimedia databases, informa-
tion security, image processing, robotic
path planning, and intelligent tutoring
systems. He has authored over one hun-

dred technical publications and a book.
He may be reached at
ncrowe@nps.navy.mil.

Dr. James Bret Michael has been
Associate Professor of Computer Science
at the U.S. Naval Postgraduate School,
Monterey California since 1998. He
received his M.S. (1987) and Ph.D. (1993)
degrees from the School of Information
Technology and Engineering at George
Mason University, and B.S. (1983) from
West Virginia University. His research
interests include both information opera-
tions and computer security for distrib-
uted computing systems such as those in
missile defense, has authored over fifty
technical publications and a book, and is
a senior member of the IEEE. He may be
reached at bmichael@nps.navy.mil.

Dr. Mikhail Auguston is an Associate
Professor of Computer Science at New
Mexico State University. He has graduat-
ed summa cum laude in Mathematics
from University of Latvia in 1971 and
received Ph.D. in Computer Science from
the Glushkov Institute of Cybernetics in
Kiev (USSR) in 1983. He has more than
thirty years of research experience in pro-
gramming language design and imple-
mentation, program testing, and debug-
ging tool design, and has authored more
than sixty technical publications. He
may be reached at mikau@cs.nmsu.edu.

Mr. Richard Riehle is a Visiting
Professor of Computer Science at U.S.
Naval Postgraduate School. He is also a
Principal of AdaWorks Software
Engineering, a consulting firm that spe-
cializes in software development and
training in Ada. Mr. Riehle has over
twenty-five years in software develop-
ment in both military and non-military
systems. His current interests are soft-
ware architecture, software deception
techniques, programming language
design, and software reliability. He has a
B.S. from Brigham Young University and
an M.S. in Software Engineering from
National University. He may be reached
at rdriehle@nps.navy.mil.

12

