
 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

ISBN 555555555/$10.00  2003 IEEE

 Index terms – deception, information systems, decoys,
World Wide Web, portals, servlets, buffer overflows

EXTENDED ABSTRACT

Modern intrusion detection systems have become good in
identifying many kinds of malicious users on computer
systems. But once they identify an attack, their usual
response is to terminate the attacker session. This tells
the attacker that they have been discovered, and
encourages them to try other perhaps more vulnerable
sites or try attack methods that we have no protection
against. But access control is not the only response
possible to an attack. Systems could use deception to fool
the attacker about the results of their actions so that the
attacker would waste time on fruitless endeavors.
Deceptive software could also provide autonomous
protective software responses to identified intrusions for a
"second line of defense" when access controls have been
subverted or destroyed [1].

One approach to managing deception in software is to
"instrument" an operating system by designing
"wrappers" to control interfaces to critical parts of it [2].
The wrappers could communicate through a shared
database of information about the attack to provide a
consistent deception. But this requires modifying an
entire operating system; this is much work, even with
tools, and is generally only feasible when source code is
available, which is not the case for Windows. We have
begun exploring this approach but need time to develop it.
A less ambitious approach could be to modify individual
software applications to provide individual deceptions.
This would allow us to more easily explore a diversity of
software functions and more easily test the human-factors
issues.

We explored this idea in experiments with a prototype
software module providing simple deceptive responses to
protect a World Wide Web site [3]. We examined three
methods of responding to a malicious attempt to overflow

 Computer Science Department, Code CS/Rp, 833 Dyer
Road, U.S. Naval Postgraduate School, Monterey, CA
9394; juliandp@mctssa.usmc.mil., ncrowe@nps.navy.mil,
and bmichael@nps.navy.mil.

the input buffer. All were done by modifying an image-
browser Web portal (interface program) we wrote that
was implemented with the Java "servlet" package. The
original portal indexes most of the images on U.S.
military ("*.mil") sites; it uses the results of a page
crawler that employs heuristics to rank likelihood of text
being a caption of an image. A user enters a set of
keywords describing images that he or she is looking for,
and the portal retrieves the images from the Web that it
thinks best match the keywords. Changes were made to
the code to permit deceptive behavior once preconditions
of suspiciousness are met, while treating normal users as
before. In deceptive mode the operating system is much
less likely to be attacked because it is being simulated in a
safe environment (a "sandbox").

One deceptive tactic involved applying a random delay to
responses of the portal. This makes it appear that the
input of the malicious user is slowing down the computer
system, a desired effect of a denial-of-service attack. We
implement this by delaying normal responses enough to
make them approximate a fixed multiple of the average
response time during normal conditions. The multiplier
was estimated from the number of current request
transactions and the work required to process each
keyword of the request. Rules triggered delaying
whenever: (1) keywords began with "file//", suggesting an
attempt to access arbitrary files on the server; (2)
keywords resembled instructions in the language C in the
use of "=" and "+", suggesting an attempt to insert code;
(3) keywords began with "//", suggesting escape-character
sequences for sending commands directly to the operating
system; (4) there was just one long keyword, suggesting
code insertion; or (5) there were more than 10 keywords,
suggesting denial-of-service attacks. Delays were
accomplished with the Java process-suspension
mechanism, and their time included a random factor to
avoid being too predictable.

A second tactic that we explored simulated a login screen
in response to suspicious behavior. There were two
variations on this deception, a login-window simulation
and a "root shell" simulation. The first was a popup
window that prompted the user for their name and
password, offering "OK" and "Cancel" buttons, but not

Experiments with Deceptive Software Responses

to Buffer-Overflow Attacks
MAJ Donald P. Julian, Neil C. Rowe, and J. Bret Michael

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

ISBN 555555555/$10.00  2003 IEEE

actually doing anything further. The root-shell approach
simulated a root (system-administrator) shell like that of
"Command Prompt" in Microsoft Windows. The idea of
both was to delay the user in a more interactive way than
just using process suspension, keeping them occupied for
a while at useless tasks. Both used the same triggers
described above.

We conducted experiments with eight test subjects,
graduate students at our school not familiar with our
research. The subjects were individually placed in front
of a computer displaying the portal Web page as modified
with deceptive code. They were told the keyword box
would accept their input, and they were asked to type up
to five words for the program to search for. After they
completed two searches, they were told that the mode
they were operating in was considered “normal.” They
were then asked to enter strings that the deception
programs considered suspicious. Subjects were then
asked to provide an overall rating of the success of the
deception, on a scale of 1 to 5, as well as whether they
themselves were fooled as to whether the system was
acting normall;y.

The subjects had a wide range of computer-related
experience, but all reported being fooled by the deception,
especially the delaying tactic. While most subjects
blindly estimated the processing time before the execution
of the first search, the program successfully accounted for
the processing time by proving valid our hypothesis that
time sequences are perceived well by users but not
durations of events in a sequence.

The simulated login screen and the fake root shell
generated better-than-expected reactions. Six of eight
subjects felt the appearance of the screens was surprising
and believable. The root-shell simulation was not
expected by any subjects, and successfully surprised
them. The reactions among the computer-science
students were especially noteworthy because their
subsequent interaction with the shell seemed to match
their expectations for normal response of the system to
their requests. So for their commands, the “Command
completed successfully” message provided sufficient
confirmation to be believable.

The overall believability of the responses was high,
averaging 4.6 out of a possible 5.0 where 4 was
"believable" and 5 was "very believable". One subject
stated he was “sort of fooled” by the tactics used, but all
other subjects stated they were for the most part fooled.
The only skepticism was with the more experienced
subjects who thought the simulated screens were too easy
to obtain. However, these subjects expressed favorable
remarks at the realism of the display, especially when
integrated with the delaying method. Responses to
delaying tactics also confirmed the hypothesis that

subjects were not concerned with the time it took to
process their malicious request, only that it took longer
than normal. A second goal of the experiment was to
determine if the subjects could tell they were being
deceived, and all subjects did believe the computer was
processing their malicious request normally.

Future work will include more complex levels of
responses, methods of isolation of the deceived attacker
from the system under attack, and methods for integrating
deception into software. Other work of ours has already
produced a standalone deceptive file-transfer utility that
simulates some published vulnerabilities [4]. Our
research into software-based deception fits between the
capabilities of current intrusion-detection techniques and
potential counteractive techniques, to better equip
computer systems for the next generation of cyber-
warfare by providing new kinds of responses to
intrusions.

REFERENCES

[1] Rowe, N. C., Michael, J. B., Auguston, M., and
Riehle, R., Software decoys for software
counterintelligence. IAnewsletter, Vol. 5, No. 1 (Spring
2002), pp. 10-12.

[2] Michael, J.B., Auguston, M., Rowe, N., and Riehle,
R.D., Software decoys: intrusion detection and
countermeasures. Proc. Third Annual Workshop on
Information Assurance, IEEE, West Point, New York,
June 2002, pp. 130-138.

[3] Julian, D. P., Delaying-type responses for use by
software decoys. M.S. thesis, Dept. of Computer Science,
U.S. Naval Postgraduate School, September 2002,
http://www.cs.nps.navy.mil/people/faculty/rowe/oldstude
nts/Julian_Thesis_Final.htm.

[4] Michael, J. B., Fragkos, G., and Auguston, M., An
experiment in software decoy design: intrusion detection
and countermeasures. Proc. 18th IFIP International
Information Security Conference, Athens, Greece, May
2003.

Acknowledgement: This work is part of the Homeland
Security Leadership Development Program supported by
the U.S. Department of Justice Office of Justice Programs
and Office for Domestic Preparedness. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of the U.S. Government.

