
IA
new

sletter V
olum

e 6 N
um

ber 1 • Sprin
g 2003 h

ttp://iac.dtic.m
il/iatac

4 5

IA
new

sletter V
olu

m
e 6 N

u
m

ber 1 • Sp
rin

g 2003 h
ttp

://iac.dtic.m
il/iatac

As the U.S. Navy moves forward with its goal of
achieving information superiority by affixing net-
work-centric warfare (NCW) capabilities at the tip

of the United States’ spear, Naval officers will become
more reliant on software-intensive systems to carry out
their missions. These systems will provide advanced warf-
ighting capabilities such as engage on remote (EOR), in
which track data from external sensors, in the absence of
local sensor data, is passed to the fire control component
of a weapon system. The system uses this data to calcu-
late launch parameters, fire the interceptor, and provide
in-flight target updates to the interceptor, with the local
weapon command center retaining control and responsibil-
ity for the engagement.

Systems that provide for cooperative engagement, and
other NCW capabilities, will need to be of high quality—
meaning that the system will have as few defects as possible.
For example, a tactical action officer (TAO) expects an EOR
system to be highly dependable, in terms of its availabil-
ity, reliability, and ability to tolerate faults, in addition to
meeting correctness criteria such as the system reaching its
desired states given specific events and guard conditions.
It is not acceptable for the system to become unavailable,
because for instance, security flaws in the shipboard com-
munication software permitted an adversary to modify the
behavior of the system. Some software testing must be per-
formed to reveal flaws that can cause the system to behave
incorrectly, along with “off-nominal” testing to gauge the
effects of inputs from the environment that could affect
properties of the system such as its survivability or security;
some inputs may result in desired systems behavior, while
others may result in undesired or unknown system behav-
ior. [1] The testing results, in addition to actual experience
with the operation of the system, form the basis on which
the TAO and other stakeholders develop their trust in the
system.

There are a numerous reasons that the quality of these
systems, in terms of their capabilities and nonfunctional
properties (e.g., testability, security), can be difficult to
assess. For instance, EOR takes place in a system-of-systems
context, for which one must assess the emerging proper-

ties of the composite system rather than those of the indi-
vidual subsystems; this can be especially problematic when
the prime contractors and subcontractors working on the
same weapon system do not fully exchange information
about the subsystems with one another, but rather treat
information for each subsystem as being company-propri-
etary. Another challenge is that DoD relies on capability-
based acquisition, in which Government personnel only
specify the capabilities of a system, while the contractor
provides the customer with a statement of work as to
how the capabilities and nonfunctional properties will be
achieved and assessed. Another significant challenge is that
such systems are largely comprised of software. Software
can be complex—such as in terms of its logic, semantics,
and dependencies between units of software—making it
hard to uncover software defects. Moreover, the software
units are often acquired as commercial-off-the-shelf (COTS)
products—and, not all vendors provide detailed informa-
tion about the internal workings or quality of their COTS
products.

Among the many efforts underway at the Naval
Postgraduate School (NPS) to support NCW initiatives, the
faculty of the Department of Computer Science have creat-
ed specialty courses (e.g., Engineering of Network-Centric
Systems) and specialty tracks (e.g., the computer security
track with an emphasis on developing EAL7 high-assur-
ance systems), in addition to redesigning some of their
existing courses to help prepare Naval officers for the task
of acquiring high-quality software-intensive systems. This
article, discusses the recent redesign of our course titled
“Software Testing” to reinforce the materials the students
learn in courses on NCW and related topics such as infor-
mation assurance (IA).

Overview of the software testing course
This course is offered in the department of computer

science curriculum for software engineering. It covers test
planning, execution, and analysis. In addition to a thorough
treatment of the theoretical underpinnings of software test-
ing, the former is covered in the textbook by Binder on test-
ing object-oriented software, that we rely on the textbook by

by Dr. J. Bret Michael

IA
new

sletter V
olum

e 6 N
um

ber 1 • Sprin
g 2003 h

ttp://iac.dtic.m
il/iatac

4 5

IA
new

sletter V
olu

m
e 6 N

u
m

ber 1 • Sp
rin

g 2003 h
ttp

://iac.dtic.m
il/iatac

Friedman and Voas to introduce the students to software–
testing theory. [2, 3] We supplement textbook material with
a set of scholarly articles that discuss the latest thinking on
how to improve both the quality of software and the effec-
tiveness of software testing—these readings serve as the basis
for in-class discussions.

The course is delivered simultaneously to both in-resi-
dence and distance-learning students, with the latter par-
ticipating via interactive video teleconferencing. The lecture
material and homework assignments are organized into
learning modules that can be accessed via the Web-based
Blackboard system—the School standardized on Blackboard
for Web-enabled and fully Web-based delivery of courses.
Our adoption of the Blackboard system for presenting the
course material is in sharp contrast to the approach taken
by Ramakrishnan, which involved developing a custom
Web-based interactive environment called LIGHTVIEWS
for teaching software testing. [4] The course on software
testing takes advantage of two of the interactive features of
Blackboard that support asynchronous learning—
n Quizzes that automatically provide feedback to

students regarding their mastery of key concepts.

n Discussion forums on which the students post their
thoughts on topics posed by the instructor and their
classmates.

A major component of the existing course is a team-
based project in which the students obtain hands-on expe-
rience developing a test plan, executing the plan, analyz-
ing the test results, and presenting the results and lessons
learned to their classmates. We subscribe to the approach
described by Carrington of providing students with an
existing software system to test (Carrington found that
if students test a system that they have developed, they
tend not to be motivated to try to uncover defects in their
system). [5] Another advantage of Carrington’s approach
is that students learn firsthand about challenges such as
the need to become knowledgeable about the application
domain and contexts in which the software system will be
used. Such a project is also important, as pointed out by

Braught and Reed for permitting students to experiment—
using scientific methods—with different strategies and
techniques for testing software systems. [6] In the past, we
have supplied the students with the software for a simple
discrete-event simulation of the operation of a Carrier-
Sense Multiple-Access with Collision Detection (CSMA/CD)
local area network, for which the requirements specifica-
tion, design, and code are given. [7]

Redesign of the course
To better meet the educational needs of the students

at NPS, we have redesigned the course on software testing
by introducing a case study of a system that exemplifies,
to some extent, the concept of NCW and the linkages
between software testing and IA—the Ballistic Missile
Defense System (BMDS), which is a system-of-systems
comprised of Naval assets (e.g., the Aegis and Spy–1 sys-
tems) along with those of other services and agencies. The
motivation for the case study is to demonstrate to the
students the benefits, challenges, and limitations associ-
ated with software testing in the context of NCW and
IA. Our approach of integrating the subject matter from
other courses into the course on software testing is just the
inverse of the proposal made by Jones to integrate soft-
ware testing into other computer science courses. [8]

The case study is now an integral part of the lecture
material and discussion topics. For instance, we have cre-
ated learning modules and discussion forums that cover
issues associated with the software testability of system-of-
systems. Examples of discussion questions are—
n How does one ensure that laboratory results hold in

the operational environment given that a system-of-
systems’ configurations are dynamic?

n If our test results are only valid for a specific con-
figuration and particular set of variables, then how
robust is our testing approach with respect to future
system behavior in the operational world?

…continued on page 16

IA
new

sletter V
olum

e 6 N
um

ber 1 • Sprin
g 2003 h

ttp://iac.dtic.m
il/iatac

16 17

IA
new

sletter V
olu

m
e 6 N

u
m

ber 1 • Sp
rin

g 2003 h
ttp

://iac.dtic.m
il/iatac

n What guarantees, if any, can be made that the
desired system behavior will be maintained in the
software as patches and modifications are made after
the system is fielded?”

In addition, we have developed team projects around
the case study that are to be used to emphasize, for
instance, the difference between testing techniques for
achieving software quality (e.g., those for module or class
testing), those for assessing software quality (e.g., system-
level testing), and between feasibility testing (i.e., can the
system provide the capability?) and operational capability
testing (i.e., can the system provide the capability in an
operational context?). The projects also emphasize impor-
tant tasks associated with testing system-of-systems, such
as distinguishing between controllable and uncontrollable
system variables, with the aim of minimizing the negative
impact on the system of those variables that can be con-
trolled and characterizing the impact of external influences
on the system that are outside the engineering-design
space. Many of the students who take the software-testing
course become software acquisition officers rather than
software developers, so we also cover software acquisition
topics as they relate to, for instance, testability.

As previously stated, the criticality of BMDS to our
nation’s security dictates that such safety-critical systems
be of high quality. In security courses, the topic of assur-
ance as it pertains to NCW is typically discussed in terms
of penetration analysis and formal verification of security
kernels. We revised the course on software testing to pro-
vide students with lecture material that clearly delineates
differences among penetration analysis, formal verifica-
tion, and software testing. Likewise, we created experi-
ments for the students to conduct. This allows them to
discover firsthand some of the pros and cons associated
with applying security-specific and off-nominal testing
(e.g., fault injection) techniques to reveal security flaws.
For example, the fact that fault injection permits the test-
ing of COTS components for which the source code is not
available, and the weaknesses of penetration analysis, one
of which as pointed out by Du and Mathur is that the tes-
ter must either know a priori the types of flaws that exist
in BMDS or be able to postulate what those flaws might
be. [9] We have also added to the supplementary reading
list articles that discuss ways of improving the testing for
security flaws, such as the techniques described by Jiwnani
and Zelkowitz to direct the application of scarce testing
resources based on the distribution and prioritization of
security vulnerabilities. [10] In this course, we also discuss
such a prioritization of resources from the perspective of
safety, reliability, and availability.

Lastly, we plan to invite personnel from combatant
commands, Government agencies, and the private sector to
give guest lectures. However, often our students have prior
experience in conducting network-centric warfare, manag-
ing information assurance, or performing software test-
ing—their expertise helps bring to light for their classmates
real-world challenges faced by the user, software-systems
engineer, and software-acquisition professional.

Technology transfer
We are assisting faculty affiliated with the federally

funded National Institute for Systems Test and Productivity
(NISTP), located at the University of South Florida, to
introduce DoD-specific content into their graduate-level
course on software testing. In addition, we are studying
the lessons learned reported by others from their experi-
ence in teaching software testing to graduate students. For
example, we might be able to apply certain aspects of the
approach reported by Hoffman, Strooper, and Walsh to
improve upon our current design of the learning module
on the subject of automated testing. [11] Our efforts are
being funded by research grants from the Space and Naval
Warfare Systems Command and Missile Defense Agency. n

About the Author

Dr. J. Bret Michael
Dr. Michael has been an Associate Professor of

Computer Science at the Naval Postgraduate School since
1998. His research on information assurance and informa-
tion operations covers many aspects of distributed com-
puting. Dr. Michael is a member of the IATAC Steering
Committee. He may be reached at bmichael@nps.navy.mil.

References

 1. Ghosh, A. K. & Voas, J. M., Inoculating software for sur-
vivability, Comm. ACM 42, 7 (July 1999), pp. 38–44.

 2. Binder, R. V., Testing Object-Oriented Systems: Models,
Patterns, and Tools., Reading, MA: Addison-Wesley, 2000.

 3. Friedman, M. A. & Voas, J. M., Software Assessment:
Reliability, Safety, Testability, New York, NY: John Wiley &
Sons, 1995.

 4. Ramakrishnan, S. “LIGHTVIEWS—Visual interactive
Internet environment for learning OO software testing.” In
Proceedings Int. Conf. on Software Eng., IEEE (Limerick, Ire.,
June 2000), pp. 692–695.

 5. Carrington, D., “Teaching software testing.” In
Proceedings Second Austral. Conf. on Computer Sci. Educ.,
ACM (Melbourne, Aust., July 1996), pp. 59–64.

 6. Braught, G. & Reed, D., “Disequilibration for teaching
the scientific method in computer science.” In Proceedings
Thirty-third SIGCSE Tech. Symposium on Computer Sci. Educ.,
ACM (Covington, KY, 2002), pp. 106–110.

 7. Sadiku, M. N. O. & Ilyas, M., Simulation of Local Area
Networks, Boca Raton, FL: CRC Press, 1994.

 8. Jones, E. L., “Software testing in the computer science
curriculum—a holistic approach.” In Proceedings Austral.
Conf. on Computing Educ., ACM (Melbourne, Aust., Dec.
2000), pp. 153–157.

 9. Du, W. & Mathur, A. P., “Testing for software vulner-
ability using environment perturbation.” In Proceedings Int.
Conf. on Dependable Systems and Networks, IEEE (New York,
NY, June 2002), pp. 603–612.

 10. Jiwnani, K. & Zelkowitz, M., “Maintaining software with
a security perspective.” In Proceedings Int. Conf. on Software
Maint., IEEE (Montreal, Can., Oct. 2002), pp. 194–203.

 11. Hoffman, D., Strooper, P., & Walsh, P., “Teaching and
testing.” In Proceedings Ninth Conf. on Software Eng. Educ.,
IEEE (Daytona Beach, FL, Apr. 1996), pp. 248–258.

…continued from page 5

“Software Testing as an Integral Part of Education in NCW and IA”

IA
new

sletter V
olum

e 6 N
um

ber 1 • Sprin
g 2003 h

ttp://iac.dtic.m
il/iatac

16

