Available online at www.sciencedirect.com

SCIENCE@DIRECT" INF

Information & Management 40 (2003) 799-812

MATION
GEMENT

www.elsevier.com/locate/dsw

Quality management metrics for software development

John S. Osmundsona’l, James B. Michaelb’*,
Martin J. Machniak®?, Mary A. Grossman®’

*Department of Information Sciences, Naval Postgraduate School, CC/Os, 833 Dyer Road, Monterey, CA 93943, USA
*Department of Computer Science, Naval Postgraduate School, CS/Mj, 833 Dyer Road, Monterey, CA 93943, USA
°Space and Naval Warfare Systems Center, OTC-2, Code 2334, 53560 Hull Street, San Diego, CA 921 52, USA
4NASA Dryden Flight Research Center, P.O. Box 273, MS 4840A, Edwards, CA 93523, USA

Received 22 July 2001; received in revised form 15 April 2002; accepted 23 August 2002

Abstract

It can be argued that the quality of software management has an effect on the degree of success or failure of a software
development program. We have developed a metric for measuring the quality of software management along four dimensions:
requirements management, estimation/planning management, people management, and risk management. The quality manage-
ment metric (QMM) for a software development program manager is a composite score obtained using a questionnaire
administered to both the program manager and a sample of his or her peers. The QMM is intended to both characterize the
quality of software management and serve as a template for improving software management performance. We administered the
questionnaire to measure the performance of managers responsible for large software development programs within the US
Department of Defense (DOD). Informal verification and validation of the metric compared the QMM score to an overall
program-success score for the entire program; this resulted in a positive correlation.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Metrics; Software management; Software process

1. Introduction

Quality of management has long been a concern
within the software engineering community. The term
“software crisis” was coined in the 1960s to refer to

* Corresponding author. Tel.: 4+1-831-656-2655;
fax: +1-831-656-2814.
E-mail addresses: josmundson@nps.navy.mil (J.S. Osmundson),
bmichael @nps.navy.mil (J.B. Michael), machniak @spawar.navy.mil
(M.J. Machniak), mary.grossman@mail.dfrc.nasa.gov
(M.A. Grossman).

' Tel.: +1-831-656-3775; fax: +1-831-656-3679.

2Tel.: +1-619-524-3473; fax: +1-619-524-3507.

3 Tel.: +1-661-276-5531; fax: +1-661-276-2792.

problems in developing software on time, within
budget, and with the properties that the software
was usable and actually used. The General Accounting
Office reported in 1979 [23] that of the government
software development projects studied:

e more than 50% had cost overruns;

e more than 60% had schedule overruns;

e more than 45% of the delivered software could not
be used;

e more than 29% of the software contracted for was
never delivered;

o more than 19% of the delivered software had to be
reworked.

0378-7206/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0378-7206(02)00114-3

800 J.S. Osmundson et al./Information & Management 40 (2003) 799-812

Since that report was released, the software engi-
neering community has attempted to improve the
software development process. For example, the
well-known capability maturity model (CMM) iden-
tifies key practices required to improve organizations’
software development processes. The CMM was codi-
fied into five levels of increasing organizational matur-
ity. More recently a personal software process (PSP)
has been introduced, defining key practices required to
improve an individual’s software development pro-
cesses [11]. There is evidence that attaining high
levels of capability as defined by the CMM has
resulted in improvements in the management of the
development of software-based systems [3] and
further evidence has shown the potential benefits to
be derived by enacting a PSP [7].

The quality of software development management
tools has improved over the past 30 years. However,
many of the same challenges, such as keeping soft-
ware development projects on schedule and within
budget, remain today. The Standish Group report [9] in
1995 found that, on average, approximately 16% of
software projects were completed on time and within
budget. In large companies the record was even worse:
only 9% of the projects were completed on time
and within budget. Moreover, the projects that were
completed contained only approximately 42% of the
originally proposed features and functions. Also, US-
based companies and government agencies spent $ 81
billion for canceled software projects and these same
organizations paid an additional $ 59 billion for soft-
ware projects that were completed, but exceeded their
original time estimates. According to Fabian-Isaacs
and Robinson [5], “software development projects are
notorious for running over budget and behind sche-
dule”. The Center for Project Management in San
Ramon, CA reported that 99% of commercial software
products are not completed on time, within budget, or
according to specifications, and that the average pro-
ject is underestimated by 285%.

CMM level-four compliance requires the develop-
ment organization to collect metrics that measure the
effectiveness of the development process, while CMM
level five requires that the organization use the metrics
continuously to improve its development process.
IEEE Standard 12207.0 and the earlier MIL-STD-
498 include metrics that might be gathered during
the software development process. Examples include

software size and complexity, software units devel-
oped over time, milestone performance, and problem/
change report status. Metrics are defined for the soft-
ware development process and the software product
but not for the quality of the project management. One
can argue that in order to systematically go about
improving the management of software projects, it is
necessary to measure the quality of project manage-
ment. Program-management tools have been devel-
oped to assist the program manager in estimating the
cost and schedule of software programs. However, the
estimation tools available assume consistent and high-
quality program management.

One of the earliest and most widely used software
project cost-estimation models is COCOMO [2]. The
basic, intermediate, and detailed COCOMO models are
based on the results of analyzing 63 software projects
and applying regression analysis in order to predict
software development cost as a function of software
size and other factors. The intermediate and detailed
COCOMO models take into account attributes of the
software product, computer hardware, development
personnel, and the project. Examples of project attri-
butes include the use of software tools and the required
development schedule. Intermediate cost estimates are
based on the estimated number of lines of code (LOC)
to be developed and then these estimates are adjusted by
applying multipliers determined by rating the project
with respect to the attributes. For example, a project
completed under an accelerated schedule is estimated
to cost more. However, COCOMO does not take into
account the quality of project management.

Boehm wrote, “poor management can increase
software costs more rapidly than any other factor”
and *‘despite this cost variation COCOMO does not
include a factor for management’s quality, but instead
provides estimates which assume that the project will
be well managed”. Among the reasons Boehm gave
for not including management quality was that man-
agement quality ratings are not easy to determine.

If the quality of the software program management
were measurable and available as input to costing and
scheduling tools, the resulting estimates could pin-
point areas of software program management in which
improvement needs to be made. Being able to measure
the quality of management of software projects objec-
tively allows development of more accurate cost mod-
els and would also provide a means for improving

1.5, Osmundson et al./Information & Management 40 (2003) 799-812 801

software project manuagement through assessment,
feedback, and correction. In this paper, we introduce
such a metric that is repeatable, termed the quality
management metric (QMM) [16]. We also discuss the
informal and more formal validation of the metric.

The QMM is computed from the quantitative
answers to a structurcd set of inquiries, in a ques-
tionnaire consisting of (wo parts:

(1) a set of paired choices between statements that
reflected possible munagement actions on a
software program. and

(2) a set of questions requiring a yes, no, or not
applicable answer.

The questionnaire was designed to eliminate essay-
type answers and Lo minimize, as much as possible,
subjective assessments.

The questionnaire addresses four areas of software
management considercd o be the most important:
requirements management. people management, risk
management, and planning/estimation management.
We assume that, collectively, measures in the four
areas can give an objective view of the quality of
software management for a specific software devel-
opment program. Thus. two programs scoring equally
on product and process metrics can be further mea-
sured and compared on the basis of the quality of their
management, thereby providing a more comprehen-
sive look at a software program.

2. Requirements management

The management of requirements is an important
measure of the quality of program management. Con-
straints can be in the form of mandates to employ a
certain development process. a selected architecture,
or by a predetermined set of requirements.

The program manager must identify and ensure that
all major stakeholders are involved in the initial
elicitation and articulation of software requirements.
Failure to include all partics at the start will most
likely spell trouble down the line {25]. McConnell [21]
refers to the product specification as the software
program’s ‘“‘compass’:

...without one. you can perform the work of
Hercules and still not produce a working product

because the work in aggregation hasn’t been
aimed in any particular direction. Without good
direction, any individual’s work can go the
wrong direction and different people can work
at cross-purposes.

Program managers can regard requirements as the
contract between the developer and the customer on a
program, and manage the customer’s expectations by
managing the requirements [14].

Requirements management focuses on managing
the process of extracting, developing, defining, and
refining the requirements of a software program [1].
Product and process metrics do exist [10]. Davis and
Leffingwell [4] state that requirements are capabilities
and objectives to which software must conform and
are the common thread for all development (and
maintenance) activities. Requirements management
is the process of eliciting, documenting, organizing,
and tracking changing requirements and communicat-
ing this information across the project team. Imple-
menting (quality) requirements management ensures
that iterative and unanticipated changes are main-
tained throughout the project lifecycle.

Quality management of a program’s requirements
must establish procedures and structure to ensure that
requirements specifications are complete, consistent,
readable, unambiguous, traceable to their origin, and
do not arbitrarily contain design stipulation. Each
requirement should be a singular idea. Good manage-
ment addresses the requirement attributes, including
the following: managing customer benefit, the require-
ments author and/or responsible parties, the corre-
sponding effort, the development priority, rationale,
and relationships to other requirements. The effort in
tracking status, dates, and versions also is a determi-
nate of quality management.

A quality program manager will, among other things,
facilitate the user/customer needs into requirements
that can be implemented. This process happens in
one of the two ways. The first is the direct procedure.
Users convey in any number of ways their needs to
program management, which in turn develops the
formal requirements to which the developers code. In
the indirect procedure, the users convey their needs
directly to the development team, which in turn develops
prototypes that the users can validate prior to detailed
design, coding, and testing. Program management

802 J.S. Osmundson et al./Information & Management 40 (2003) 799-812

adjudicates between user and developer during the
indirect process and assists in the specification of
formal requirements. However, the formal require-
ments serve mainly as a record of what has been
performed [15].

Although these tools enable one to build lists of
requirements, it is the responsibility of the program
manager to establish requirements prioritization [26];
this is typically derived from tradeoff analyses that
take into consideration the level of availability of
various resources, such as the development experience
of the software development team, project budget,
time allotted to complete the project, and availability
of software development tools and reusable compo-
nents. Identifying all the requirements upfront and
then developing the product is idealistic in today’s
software environment. Requirements change for many
reasons [8]. It is the program manager’s responsibility
to establish controls such as a software configuration
management (SCM) process. SCM helps direct and
coordinate those changes so they can enhance, rather
than hinder software development. The SCM proce-
dures must be easy to understand and consistent. It is
well documented that time and cost increase almost
exponentially when requirements are changed late in
the development process. The program manager must
choose to “freeze” requirements at some point, but
establish the framework for a follow-on version
release: unlike most durable goods, software systems
are ever changing.

3. Estimation/planning management

Estimations are the basis from which planning is
performed on a program [13]. Planning a software
product development requires a frame of reference and
an ability to measure against it. The program manager
has three major measures with which to estimate the
program: products, processes, and resources [22].

Product measures generally refer to volume, such as
LOC. The measure can be the whole product or
various elements, such as modules, components, or
manuals. Measurement is accomplished by phase,
such as the amount of code produced in the imple-
mentation phase or the LOC changed during unit
testing. Measures of other product attributes might
include system throughput, cyclomatic complexity,

module coupling, and function points (FP). Process
measures quantify behavior, strategies, and execution
of the process used to develop the product. One
general category of process measures is event counts,
such as the number of defects found in test, require-
ment changes, or milestones met. Another general
category concerns time measures, such as cycle time:
time to complete a project. In highly competitive
markets, cycle time, or deployment, may be more
important than reducing development costs.

Resource measures refer specifically to labor hours
required for product development. Monetary cost
typically becomes an estimated outcome from pro-
cess, product, and resource measures. Estimation uti-
lizing all three measures can be used for planning
schedules and costs. Subsequent tracking of metrics
throughout the program will aid program updates and
provide a basis for planning future programs. For
example, program management can use work break-
down structures as a tool to identify and track impor-
tant tasks, milestones, and deliverables throughout the
program and lifecycle of a software-based system.
Once initial costs and schedules are derived from
estimations, progress tracking and schedule-and-cost
adjusting become key factors in the success of the
software development program.

Establishing and tracking earned value is recom-
mended as a way to measure program progress. By
assigning value to a developer’s work package, its
current cumulative value can be compared to the
estimated and actual cost to complete to give a more
accurate measure of schedule-and-cost progress. The
program manager must set up a structure to use
product, process, and resource measures in a software
program, and it is the program manager’s responsi-
bility to ensure that the measure being used will yield
the most accurate and useful results.

4. People management

If one person could perform all the software devel-
opment tasks, there would be no need for the manage-
ment of people. How management recruits, organizes,
and treats human resources is instrumental to the
success or failure of any endeavor. Software develop-
ment is an intellectual activity that requires creative
problem solving before and during the application of

1.S. Osmundson et al./Information & Management 40 (2003) 799-812 303

software processes, methodologies, and tools. People
management encompasses not only such issues as the
program manager’s ability to allocate human
resources and ensure an appropriate work environ-
ment, but it also requires communication and leader-
ship, including the structure for communication and
mentoring for the entire program. The QMM is
intended to examine questions such as: does the
management create the proper environment through
good working conditions and an appropriate reward
structure?

5. Risk management

An overarching theme that runs through each of
these sections is risk management. Ultimately, it is the
management’s ability to identify and manage high-
risk elements early in the process; this will have an
impact on the success or failure of a software program
[24]. We define risk exposure as the product of the
probability of an unwanted event and the loss experi-
enced if the event occurs. Such problems might have
an adverse impact on the cost, schedule, or technical
success of the program; the quality of products; or
team morale. Because non-trivial software develop-
ment programs typically do not run as planned, every
software program carries with it some degree of risk
[12]. Therefore, requirements, estimation/planning,
and people management all engender some level of
risk. Risk management is the process of identifying,
addressing, and mitigating the effects of unwanted
events. It is critical in measuring the management
quality of a software program.

The cost of managing risk is relatively low at the
start, but increases as the program progresses. The
factor takes into account any structure that promotes
success in the software development environment by
considering individual risks, assessing individual
impact, determining a probability of occurrence,
and planning a mitigation strategy. Program man-
agement’s judgments within the established struc-
tures will vary, and can ultimately determine the
success or failure of a risk-management effort. How-
ever, the establishment of structure dedicated to
these practices can be objectively measured and
provide an indication of the quality of program
management.

6. The QMM questionnaire

The approach used to develop the QMM included
searching the literature, interviewing senior program
managers, and conducting focus group meetings.

Focus groups (generally with 4-12 individuals per
session) consisted of a wide range of government and
private industry software professionals each involved
with or previously involved with US Department of
Defense (DOD) software development projects. Indi-
vidual experience was from 2 to over 20 years. Soft-
ware categories ranged from program managers to
programmers. The predominant software language
experience was in Ada, C, and C++-. However, many
participants had experience with other languages and
other software projects outside DOD. Sessions were
conducted with facilitators, structured to maintain
focus on the issues, and with care to avoid bias of
the outcomes.

The QMM measures the quality of management for
and in a specific software program. The overall goal
was to develop an objective, standardized metric to
which program management could be compared and
ranked, thus providing a baseline for quantifying
improvement. This metric compares the same man-
agement on different software programs or at different
times during the same program. Metric development is
difficult, because the quality of management may be
very subjective. Words that prompt subjective
responses, such as “feel”, “think”, and “believe”,
were avoided as much as possible in the QMM ques-
tionnaire. Answers were constrained to enable scoring
to a scale.

Part one of the questionnaire contains pair choice
questions. The person filling out the questionnaire
must choose one of the two statements that best
described their program. The choice did not have to
match exactly; it should just be the closest. Each pair
statement represented two differing ideas in order to
ascertain a tendency of the individual. Often the pair
choices were repeated with different wording to con-
firm earlier choices and measure the strength of the
tendency. The survey format, with the proper mix of
questions and repetitions, was intended to be used for
reaching consensus on issues and to measure the
strength of tendencies. Each section had a maximum
score of 70 points. The risk, estimation/planning, and
people management sections had 70 questions each.

804 J.S. Osmundson et al./Information & Management 40 (2003) 799-812

The requirements management section had 50 ques-
tions and included an alternate block of 16 questions
depending on the software development strategy
used.

Part two of each questionnaire consisted of yes—no—
n/a (n/a: not applicable) questions. Instead of asking
open-ended questions that participants could answer
in a variety of ways in essay form, this format stan-
dardizes the responses for easier comparison. It is
user-friendly for conducting surveys, requiring mini-
mum writing by the participant. Each yes, no, or n/a
choice has an associated point value, based on the
relative importance of the question. The use of the “n/
a”” box was discouraged. However, it was used in cases
in which the program manager did not have direct
control over the issue that was raised in the question.
For example, a government program manager may not
have direct hire/fire authority over development per-
sonnel. Thus, if the survey question asked whether the
program manager has direct hire/fire authority over the
personnel, the appropriate answer would be n/a,
because it allowed the interviewee to indicate that
the program manager is constrained and thus does not
penalize the program manager for factors beyond his
or her control.

Each section had a maximum value of 62 points.
The estimation/planning, people, and risk-manage-
ment sections had 50 questions each. The requirement
section had 47, including an alternative block of 6
questions, depending on the development strategy
used. The complete survey, including both parts for
all four sections, contained 457 questions.

The choice of this questionnaire format sought to
dissect complex decisions into their basic components
of choice. Objectively evaluating and comparing over-
arching program structures and policies required a
survey that identified and evaluated the basic level of
decisions in all relevant aspects of software manage-
ment. To avoid any pre-bias tendency of one response
over another, administration of the questionnaire was
conducted so that the subject was unaware of the point
value of each response.

The questionnaire for the management of require-
ments evaluated the program manager on establish-
ment of procedures. These questions did not seek to
determine the quality of judgments on any specific
decision. The thrust of the questions was to establish
the structure, if any, laid out by the program manager

in the area of requirements. Examples of requirements
pair choice selection questions were the following,
where the interview subject was asked to mark the box
of the most appropriate answer:

Formal requirements list ~ Informal requirements
list

Look to reformulate,
interview in-depth,

or otherwise re-validate

Requirements taken
as is from customer

The estimation/planning management section did not
seek to choose or require a specific estimation tech-
nique. This area sought to quantify the management
effort of the estimation process. The questions address
whether the choice of an estimation technique was
appropriate and how well that technique was imple-
mented. Examples of estimation/planning manage-
ment pair choice selection and yes-no-n/a questions
are:

Estimates by
algorithmic methods
Management only
on estimations

Estimates by analogy

All team members
involved in estimation
process

Yes No n/a

Code reviews planned
in schedule

Work breakdown
structure developed

Because people management encompasses many dis-
tinct areas, each of which was highly weighted in
importance, the questionnaire was divided into four
subsections: human resources, leadership, communi-
cation, and technical competency. The leadership
questions reflected the personal leadership skills
exhibited and the leadership mentoring provided by
the program manager. The communication questions
sought to ascertain the communication protocols set
up for the program organization and used individually
by the program manager.

J.S. Osmundson et al./Information & Management 40 (2003) 799812 805

Examples of people management pair choice selec-
tion and yes—no-n/a questions are:

Only as much knowledge
as necessary for their work
Not required

Keep people
well informed
Coders notebook.
weekly
accomplishment
reports required

Yes No n/a

PM is accessible in person
by cach tecam member

PM attempts o motivate
individuals on the
program team

The questionnaire also was used to ascertain the struc-
tures used by program management for identification,
monitoring. and managing risk. The questions deter-
mined whether the program manager had set in place
strategies and personnel to implement risk assessment,
explore. and prioritize all reasonable risks. Does the
program manager have an active risk-management
program and cstablished procedures to monitor the risks
and update the plan? The goal was to ensure that the
program manager had, for each identified risk, an inte-
grated mitigation strategy. Examples of risk-manage-
ment pair choice selection and yes—no—n/a questions are:

Risk management is Risk management is
informal, if at all

Not tracked

formal and documented
Risk status tracked

Yes No n/a

Risk management is
formal and documented
Risks are tracked

It is difficult 10 measure individual judgments about
risk management. What can be measured is whether
the program manager has performed risk-management
elements.

7. Methodology and scoring

The methodology is illustrated in Fig. 1. The QMM
survey instrument was administered to selected pro-
gram managers and software developers. Raw QMM
scores were weighted, converted to a 1-10 scale, and
then compared to subjective success scores estimated
for the same programs by the same survey subjects.

The point totals from each of the two questionnaire
parts per section were entered on the QMM Summary
Score Sheet. Point totals for part one and part two were
then added together to determine the total points for
each section. These were multiplied by their relative
Importance Coefficient (IC) to yield a weighted score.
After weighted scores were determined for each of the
four sections, they were summed together to yield the
QMM score.

The IC was determined from the relative rankings of
importance of each of the sections. Experienced soft-
ware professionals provided the data to determine the
IC through the focus groups [17,19] and one-on-one

Administer
QMM Survey
Instrument

v
v v

Obtain QMM Score

e Add up raw
section scores

e Weight raw
section scores by
importance
coefficients

e Add weighted
section scores

e Normalize total
weighted section
scores to obtain
QMM score on a
scale 0-10

Obtain interview
subject's program
success score estimate
on a scale 0-10

v

Correlate QMM (0-10
scale) with program
success score

Fig. 1. QMM survey instrument methodology.

806 J.S. Osmundson et al./Information & Management 40 (2003) 799-812

interviews [18,20] only after thorough explanation and
understanding of each category.
The QMM equation is given in Eq. (1):

QMM = 0.92RgM+0.67EPM+0.55RkM + 1.86PM
ey

where RqM is the requirements management metric
score, EPM the estimation/planning metric score,
RkM the risk-management metric score, and PM is
the people management metric score.

The QMM ranges from 528 points to —130.9, as
part two contained negative point response values. The
QMM percentage score is a derived measure of the
QMM score. To obtain a QMM score scaled from 1 to
10, the survey minimum possible score was normal-
ized to 0: 130.9 was added to the survey minimum
possible score. Correspondingly, this was also added
to both the survey maximum QMM score and to the
actual QMM score obtained. The normalized QMM
score obtained from the survey was then divided by the
normalized survey maximum possible QMM score of
659 and then multiplied by 10.

Once the survey was completed, the interviewees
were asked to rate the success of the program at the
point in time when the program was being evaluated,
using a scale of 0—10. To assist the interviewees in
visualizing the scale, the interviewer drew and labeled
a scale (as shown in Fig. 2) and the interviewees were
asked to place an “X”’ at the place that represented the
success of the program at this point in time. Next the
interviewer asked the interviewee for a numerical
value to associate with the “X” on the scale. Zero
was defined as abject program failure with no worth-
while product. Ten was defined as an absolutely
perfect software product with flawless program execu-
tion.

The survey participant’s QMM score was compared
to his or her individual overall success score and to the
mean overall success score of the program. The goal

‘ L] L]] ‘
T T 1T T T 1T 1T 17
01 2 3 45 6 7 8 910
Total Perfect
Failure No Errors

Fig. 2. Overall program score scale.

was to determine any correlation between the parti-
cipants’ QMM score, their individual success ranking
of the overall program, and the mean success ranking
of the overall program.

8. Informal QMM validation

Three software programs were evaluated during
1999 at the US Space and Naval Warfare (SPAWAR)
Systems Center. The program manager and one pro-
gram development team member evaluated program
A, the program manager and two program develop-
ment team members evaluated program B, and the
program manager and one program team member
evaluated program C.

Table 1 summarizes the resultant scores of the three
programs. The subscript “PM” indicates the program
manager’s survey results and the number in subscript
indicates a participant’s survey results other than the
program manager. The mean success score of a pro-
gram includes the individual success ranking scores by
the individuals participating in the survey and others
associated with the program in some way in which
they can judge the success of the program.

Although there is a strong overall correlation
between QMM scores to success scores, as shown in
Table 2 there is a negative correlation between the
program managers’ assessments and those of the devel-
opers. There are strong correlations for program man-
ager QMM scores to program manager SUCCess scores
and a similar strong correlation for corresponding
developer scores, but weak or negative correlations
between program manager and developer assessments;
this was due to the effect of the assessment of the
manager of program B within the small sample set.

The summary sheets for program A revealed a weak
risk-management section, but overall the program was
highly structured and enjoyed good technical success
with its deliverables. Program C was a smaller pro-
gram that was relatively unstructured, with essentially
no risk management, little planning and poor require-
ment extraction. However, the program delivered a
usable product, due to strong practices in the people
management portion and a technology that was rela-
tively straightforward. Program B exhibits a signifi-
cant divergence from the scores of the program
manager and the other team members. This program

J.S. Osmundson et al./Information & Management 40 (2003} 799-812 807

Table 1
Results of informal QMM validation
Program A Program B Program C
Participant Participant Participant Participant Participant Participant Participant
Apm A, Bpm B, B, Cem o
QMM score 338 322 386 106 47 198 189
QMM score (0-10) 7.12 6.88 7.85 3.59 2.70 4.99 4.86
Success score (0—-10) 7 7 9 4 3 4 4
Mean success score 7 4 4

Table 2
Correlations of data from informal validation

Score

Dev. QMM PM success Dev. success

PM QMM score —0.20 0.99 0.14
Dev. QMM score —0.35 0.94
PM success score —-0.02

appeared to have a dichotomy in perception, and
further interviews with others in the program indicated
that there were significant management issues that
needed to be resolved. The overall conclusion of
the informal validation was that the QMM had pro-
mise of being a valid approach to developing a quality
management metric, and that further study was war-
ranted.

9. Extended QMM validation

The QMM survey instrument was subsequently
used by Grossman [6] to extend the informal valida-
tion by measuring the performance of 10 program
managers on US DOD software development pro-
grams. These 10 were asked to complete the QMM
questionnaire and, in addition, the survey instrument
was given to one to two members of the development
team who were knowledgeable about the overall
practices and success of each of the programs. A
requirement for choosing the individual development
team members was that they had a good understanding
of the overall program and were knowledgeable about
the management practices and infrastructure imple-
mented by the program manager throughout the pro-
gram. We tried to choose individuals whose experience
was not limited to specific areas of the program.

The program manager was asked to determine a
specific point in time on the program, such as a

| milestone or delivery, for the evaluation of the pro-
| gram management and to define it so that the indi-

vidual development team members would be able to

| identify the time that was selected in order to be able
' to evaluate the program for that same point. The

survey instrument was applied to the interviewees in
one of two ways: one-on-one personal interview that
lasted approximately 2 h or via an electronic copy
distributed and returned by electronic mail. In 8 of
the 10 programs (17 surveys in total) the survey
instrument was applied in personal interviews; in

. the remaining two, H and I (four surveys total),
- the survey instrument was applied through electronic

mail. The interviewer also asked the interviewee for

i feedback on the survey instrument itself. For exam-

ple, they were asked:

e Were there any questions that did not make sense?

e Were there words that the interviewee did not
understand?

e Was the survey instrument too long?

e How would they improve the survey instrument?

e What was their overall impression of the survey
instrument?

| This feedback was collected to determine the level of

frustration that the survey induced in the interviewee
and to provide glimpses into the viability of the survey
instrument for future improvements. In order to
encourage complete and open participation in the
QMM survey, the interviewees were assured at the
beginning of the survey process that the results would

: be reported anonymously. To this end, the program

data reported here is reported as program A, B, C,

i etc. The minimum time required for completing the

808 J.8. Osmundson et al./Information & Management 40 (2003) 799-812

Two Programs with
Twenty-Four to
Twenty-Five Developers

One Program
with
Eighteen
Developers

One Program with
Three Developers

One Program with
Six Developers

Five Programs with
Nine to Eleven Developers

Fig. 3. Size of programs surveyed.

survey instrument in a personal interview was 1 h; the
average time required to complete the survey instru-
ment was 2 h and the longest time was 4 h.

Figs. 3 and 4 provide information about the char-
acteristics of the US DOD projects included in the
extended QMM validation.

Results of program managers’ assessments are
summarized in Table 3. The first column gives the

1992
One Program

1993

One Program

1998

One Program

1999
Three Programs

program-identifying letter, the second column gives
each program manager’s subjective score on a 0-10
scale, and the third column gives the program man-
ager’s total QMM score, translated to a 0-10 scale.
Table 4 gives the equivalent set of scores for the
individual developers (IND).

The data was examined to determine if there were
any obvious trends. The possibility of the program

2000

Four Programs

Fig. 4. Time frame of programs surveyed.

J.S. Osmundson et al./Information & Management 40 (2003) 799-812 809

Table 3
Program manager (PM) QMM scores from extended QMM
validation

Program PM score
Program QMM Req. Est. People Risk
Mgt. Plan. Mgt. Mgt.
A 9.9 6.8 52 6.2 8.6 4.0
B 7.5 8.9 8.6 9.3 8.8 9.5
C 8 8.1 8.8 75 8.8 5.1
D 7 7.0 7.2 5.0 79 5.9
E 4 5.2 52 4.5 6.1 2.6
F 9 5.4 55 3.7 73 0.7
G 7 6.8 6.0 6.6 7.8 4.9
H 6 7.7 7.1 7.5 7.8 8.3
I 3 4.8 4.8 3.8 6.3 0.9
J 7 8.2 8.6 6.9 8.4 8.1

managers consistently rating the success of the pro-
gram higher than the corresponding QMM percentage
score was not found in the data. In one instance,
program A, the program manager rated the program
overall far higher than the QMM percentage score, the
individual development team member overall program
score, and the QMM percentage score. The survey
results obtained from program F were contrary to our
expectations. It did not utilize many of the currently
accepted software engineering management processes
and procedures, such as formal risk management.
Thus, we expected the ranking of the success of this
program to be low. On the contrary, the program was

Table 4
Individual developer (IND) QMM scores from extended QMM
validation

Program IND score

Program QMM Req. Est. People Risk
Mgt. Plan. Mgt. Mgt.

A 7 5.7 6.2 5.1 5.6 5.1
B 8 8.7 8.6 9.0 8.5 9.0
C 5 6.4 8.2 4.0 7.8 1.7
Dy 7 52 8.1 3.8 4.1 5.6
D, 7.5 7.7 8.0 9.3 6.5 8.9
E 6 6.5 6.6 6.8 6.6 52
F 9 54 7.0 35 58 33
G 8 7.0 6.7 6.7 8.1 4.3
H 6.5 7.7 6.9 7.5 79 84
I 3 2.6 32 2.2 2.5 1.1
J 7 6.3 7.7 72 5.7 4.3

Table 5
Extended validation data correlation
Score
Dev. QMM PM success Dev. success

PM QMM score 0.74 0.44 (0.53) 0.29
Dev QMM score 0.35 (0.49) 0.59
PM success score 0.68

ranked as highly successful by the software developers
and the customers with an overall program-success
score of 9.0, yet the QMM percentage score consis-
tently ranked the program as a 5.4. The exciting part
of the discovery is that it appears that the QMM
survey instrument does measure the successfulness
of the implementation of currently accepted software
engineering management practices as defined by
Machniak.

In programs C, I, and J, the program manager’s
QMM percentage score was consistently higher than
the program manager’s overall program-success score
and the scores of the individual development team
member in the areas of overall program-success score
and QMM percentage score.

Table 5 summarizes correlations of data from
Tables 3 and 4. Correlations shown in parentheses
are computed excluding program A where the pro-
gram manager awarded a 9.9 subjective success
score out of a possible 10. In general, the data shows
positive correlations between subjective assessments
of program-success and corresponding QMM scores,
both for program managers and independent devel-
opers. This is particularly true for the data set that
excludes programs A and F, as they are outliers
(discussed above). In this data set, the correlation
for the program manager QMM scores to program-
success scores is 0.89 and the corresponding corre-
lation for the individual development team members
is 0.82. This strong correlation indicates the QMM
survey instrument is producing good QMM percen-
tage-score results.

10. Conclusion

Informal initial validation of the QMM indicated that
the QMM questionnaire showed a positive correlation

810 J.S. Osmundson et al./ Information & Management 40 (2003) 799-812

between QMM scores and observed program-success,
albeit over a very limited sample set. Extended valida-
tion of the QMM showed a strong correlation with
the QMM percentage score and the overall program
score for both the program manager and individual
development team member data sets. This indicated
that the QMM survey instrument is a viable method for
measuring the quality of management on a software
development program for which the management
policies and procedures are the same as or similar to
the currently accepted software engineering manage-
ment practices. In the case where the management
practices and procedures are known to diverge from
the currently accepted practices, the QMM survey
instrument may be used to measure the level to which
the currently accepted practices are implemented but
will yield a lower QMM percentage score and probably
predict a lower success rate for the program than the
actual rate.

The QMM survey instrument may be useful in
detecting discrepancies between the program man-
ager’s and the individual team member’s perspectives
and understanding. When the program manager’s
QMM percentage score is consistently higher than
the overall program-success score and the QMM
percentages of the individual development team mem-
bers, it may indicate the program manager believes he
or she is implementing and successfully using more
software engineering management practices on the
program than are actually being implemented by
the development team.

As new metrics or ways to report metrics are
discovered, both the government and the contractor
have to tailor the standard metrics reporting to incor-
porate improvements; this ensures that the metric set
remains as useful for management purposes as possi-
ble. Adjustment of the weighting of the questions
within each QMM section and among the QMM
sections may be required to focus the QMM survey
instrument on the areas which are the most important
in determining and measuring the quality of manage-
ment on a software development program. Lastly, the
total number of questions might be reduced if it is
determined that this is appropriate. Reducing the
number of questions on the survey instrument includes
examining tradeoffs related to the usefulness of the
survey instrument versus the ease of executing the
survey instrument if it is shorter in length.

The QMM survey instrument currently has the
limitation that it does not provide specific feedback
guidance for the program managers. In fact, the QMM
survey instrument measures the performance of the
program manager at a high level and only provides
feedback to the program manager to the level of their
score in each of the four QMM sections. There is
currently no provision for providing more specific
feedback to the program manager other than in the
area of people management, which is made up of four
subsections: human resources, communication, lea-
dership, and technical competency.

The QMM survey instrument appears to detect
differences in perception between the program man-
ager and the development team on which practices and
procedures the program manager believes are imple-
mented and working and the actual state of under-
standing and implementation of the practices and
procedures on the development-team level. The pro-
gram manager feedback mechanism could include
detection of areas where the perceptions of the pro-
gram manager and the development team differ
greatly and the information could be used to alert
the program manager or the program manager’s man-
agement trainer or mentor to the problem. Knowledge
of areas of potential misunderstandings enables the
program manager to begin working on opening up the
communication channels to better guide the develop-
ment team’s efforts and receive feedback on the
processes and procedures which the program manager
implements, enabling them to improve them.

The QMM survey instrument results could also be
used as an input into current program cost, risk, and
schedule estimation models to improve the resultant
estimations. Currently, these models do not incorpo-
rate the quality of software development management
as a factor other than to assume good management.
As this assumption is not necessarily a good assu-
mption, using the QMM results as input into the
models may increase the accuracy of the estimation
results.

References

[1] A.T. Bahill, F. Dean, Discovering system requirements, in:
AP. Sage, W.B. Rouse (Eds.), Handbook of Systems
Engineering and Management, Wiley, New York, 1997,
pp. 175-220.

J.S. Osmundson et al./Information & Management 40 (2003) 799-812 811

[2] B.W. Boehm, Software Engineering Economics, Prentice-
Hall, Upper Saddle River, NJ, 1981.

[31 K.L. Butler, The economic benefits of software process
improvement, CrossTalk—Journal of Defense Software En-
gineering 8 (7), 1995, pp. 14-17.

[4] AM. Davis, D.A. Leffingwell, Making requirements manage-

ment work for you, CrossTalk—Journal of Defense Software

Engineering 12 (4), 1999, pp. 11-13.

C. Fabian-Isaacs, E. Robinson, The project management

puzzle, Software Development 7 (3), 1999, pp. $12-S16.

[6] M.A. Grossman, Validation of a quality management metric,
Masters thesis, Naval Postgraduate School, Monterey, CA,
September 2000.

[71 W. Hayes, J.W. Over, The personal software process: an

empirical study of the impact of PSP on individual engineers,

Technical report CMU/SEI-97-TR-001, Software Engineering

Institute, Pittsburgh, PA, December 1997.

J. Heberling, Software change management, Software

Development 7 (7), 1999, pp. S7-S11.

Chaos, in: The Standish Group Report, Standish Group, West

Yarmouth, MA, 1995.

[10] W.S. Humphrey, A discipline for software engineering,
Addison-Wesley, Reading, MA, 1995.

[11] W.S. Humphrey, Using a defined and measured personal
software process, IEEE Software 13 (3), 1996, pp. 77-88.

[12] W. Keuffel, Planning for and mitigating risk, Software
Development 7 (9), 1999, pp. SI-S5.

[13] J.D. Launi, Creating a project plan, Software Development 7
(5), 1999, pp. S1-S6.

[14] M.J. Machniak, Interview with Capt. (USN, Ret.) L. Preston
Brooks Jr. of SAIC’s Advanced Information Technology
Group, 3 September 1999.

[15] M.J. Machniak, interview with Capt. (USN, ret.) Gerald
Nifontoff of Lockheed-Martin Corporation’s Undersea Sys-
tems Division, 7-8 September 1999.

[16] M.J. Machniak, Development of a quality management
metric (QMM) measuring software program management
quality, Master’s thesis, Naval Postgraduate School, Monter-
ey, CA, December 1999.

[17] M.J. Machniak, Software Program Management Focus Group
No. 2, SPAWAR Systems Center, San Diego, CA, October
1999.

[18] M.J. Machniak, interview with Ms. Julie Streets of JP
Training and Development Associates, 3 August 1999.

[19] M.J. Machniak, Software Program Management Focus Group
No. 1, SPAWAR Systems Center, San Diego, CA, 15 October
1999.

[20] M.J. Machniak, interview with Dr. John Pickering, organiza-
tional consultant, September 1999.

[21] S. McConnell, Software’s ten essentials, IEEE Software 14
(2), 1997, pp. 144.

[22] R.S. Pressman, A Manager’s Guide to Software Engineering,
McGraw-Hill, New York, 1993.

[23] Contracting for computer software development, FGMSD-
80.4, US General Accounting Office, Washington, DC, 1979.

[24] K.E. Wiegers, Know your enemy: software risk management,
Software Development 6 (10), 1998, pp. 38-42.

[5

—

[8

[wi}

[9

—

[25] K.E. Wiegers, Automating requirements management, Soft-
ware Development 7 (7), 1999, pp. S1-S6.

[26] K.E. Wiegers, First things first: prioritizing requirements,
Software Development 7 (9), 1999, pp. 48-53.

John S. Osmundsen received his PhD in
physics in 1968 from University of
Maryland, USA. He is an associate
professor of information sciences at the
Naval Postgraduate School. His research
interests are software project manage-
ment including systematic methods for
assessing the quality of project manage-
ment, the systems engineering of net-
worked information systems, and
discrete-event modeling and simulation
of information systems. Prior to joining NPS he was a scientist,
chief systems engineer and systems engineering manager at
Lockheed Missiles and Space Company.

James B. Michael received his PhD in
information technology in 1993 from
George Mason University, USA. He is
an associate professor of computer
science at the Naval Postgraduate
School. His research interests include
distributed computing, information op-
erations/warfare, and software engi-
neering. He is a senior member of the
Institute of Electrical and Electronics
Engineers, and active in both the
Association for Computing Machinery and the International
Federation for Information Processing. He has held several
research appointments, most recently with the University of
California at Berkeley and Institut National de Recherche sur les
Transports et leur Sécurité.

Martin J. Machniak received his MS in
software engineering in 1999 from Naval
Postgraduate School, USA. He is the
head of the Navigation and Low-Ap-
proach Landing Systems Branch at the
Space and Naval Warfare Systems Cen-
ter (SPAWARSYSCEN), San Diego. His
group provides development, implemen-
tation, lifecycle support, and upgrades
for various military and commercial
systems that require en route information
and precision-approach capabilities. Prior to joining SPAWAR-
SYSCEN he was a product engineer with Motorola. He currently
leads a pilot program to implement Higher Performance Organiza-
tion principles for improving teamwork culture and to obtain
measurable improvement in areas such as customer service
response time and satisfaction.

812

J.S. Osmundson et al./ Information & Management 40 (2003) 799-812

Mary Alice Grossman received her MS
in software engineering in 2000 from
Naval Postgraduate School, USA. She is
an aerospace engineer with the NASA
Dryden Flight Research Center. She is
currently involved with the development

of the hardware-in-the-loop flight control simulation for the C-17
Intelligent Flight Controls program. She has also worked at Edwards
Air Force Base as an aerospace simulation engineer and as a program
manager for the Air Warfare Mission Simulation and the Flight
Simulator Modernization programs. She has extensive experience in
software development and software program management,

Available online at www.sciencedirect.com

sc.ENcE@D.nEcT.

IN FngAT ION
GEMENT

www.elsevier.com/locate/dsw

Information & Management 40 (2003) 799-812

Quality management metrics for software development

John S. Osmundson™’, James B. Michael™”,
Martin J. Machniak®?, Mary A. Grossman®>

“Department of Information Sciences, Naval Postgraduate School, CC/Os, 833 Dyer Road, Monterey, CA 93943, USA
®Department of Computer Science, Naval Postgraduate School, CS/Mj, 833 Dyer Road, Monterey, CA 93943, USA
“Space and Naval Warfare Systems Center, OTC-2, Code 2334, 53560 Hull Street, San Diego, CA 92152, USA
“NASA Dryden Flight Research Center; P.O. Box 273, MS 4840A, Edwards, CA 93523, USA

Received 22 July 2001; received in revised form 15 April 2002; accepted 23 August 2002

Abstract

It can be argued that the quality of software management has an effect on the degree of success or failure of a software
development program. We have developed a metric for measuring the quality of software management along four dimensions:
requirements management, estimation/planning management, people management, and risk management. The quality manage-
ment metric (QMM) for a software development program manager is a composite score obtained using a questionnaire
administered to both the program manager and a sample of his or her peers. The QMM is intended to both characterize the
quality of software management and serve as a template for improving software management performance. We administered the
questionnaire to measure the performance of managers responsible for large software development programs within the US
Department of Defense (DOD). Informal verification and validation of the metric compared the QMM score to an overall
program-success score for the entire program; this resulted in a positive correlation.
© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Metrics; Software management; Software process

1. Introduction

Quality of management has long been a concern
within the software engineering community. The term
“software crisis” was coined in the 1960s to refer to

* Corresponding author. Tel.: +1-831-656-2655;
fax: +1-831-656-2814.
E-mail addresses: josmundson@nps.navy.mil (J.S. Osmundson),
bmichael @nps.navy.mil (J.B. Michael), machniak @spawar.navy.mil
(M.J. Machniak), mary.grossman@mail.dfrc.nasa.gov
(ML.A. Grossman).

' Tel.: +1-831-656-3775; fax: +1-831-656-3679.

> Tel.: +1-619-524-3473; fax: +1-619-524-3507.

?Tel.: +1-661-276-5531; fax: +1-661-276-2792.

problems in developing software on time, within
budget, and with the properties that the software
was usable and actually used. The General Accounting
Office reported in 1979 [23] that of the government
software development projects studied:

e more than 50% had cost overruns;

e more than 60% had schedule overruns;

e more than 45% of the delivered software could not
be used;

o more than 29% of the software contracted for was
never delivered;

e more than 19% of the delivered software had to be
reworked.

0378-7206/$ — see front matter © 2002 Elsevier Science B.V. All rights reserved.

PII: S0378-7206(02)00114-3

