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Abstract 
Given that battle-management solutions in system-of-systems environment are separately 
designed and developed on various operating platforms in different languages, predicting 
battle-management behavior of system-of-systems is not possible.  As a rule, battle 
management is executed at the system level rather than the desired system-of-systems 
level.   

Typically, C4 systems are non-real-time systems.  Traditionally, weapon systems are 
real-time systems.  If we are to match the performance of weapon systems and avoid the 
negative impact of forcing synchronization of battle manager software with weapon 
systems for messaging, then we must develop the battle manager as real-time software.   

We advocate the development of battle-management software as a real-time set of system 
functionality that addresses warfighter usage.  To achieve the level of desired predictable 
battle-management behavior, we maintain that it is essential to develop a formal 
representation that captures the desired battle manager system behavior and test the 
formal representation against the expected battle-management properties.   

Furthermore, we assert that it is critical to develop the battle manager as a real-time 
software-intensive system to ensure the schedulability of battle-management tasks and 
provide for concurrent execution of such tasks where applicable.   

Introduction 
The annals of human conflict are replete with the terrible results of the traditional war 
strategy of attrition in which opposing forces attempt to inflict more casualties on the 
enemy than the enemy can sustain and maintain a viable military force.  This “mass-on-
mass” strategy resulted in staggering losses of life in countless wars.  For example, 
623,026 soldiers lost their lives in the four years of the U.S. Civil War.  At Antietam, the 
combined casualties of Union and Confederate forces totaled 26,134 soldiers on a single 
day of battle. [Leckie 90]  The war of attrition concept was a costly strategy in terms of 
human life. 

During the past decade, the Department of Defense (DoD) shifted military tactics from 
the traditional war of attrition to a transformational concept of full-spectrum dominance: 
the ability of US forces, operating unilaterally or in combination with multinational and 
interagency partners, to defeat any adversary and control any situation across the full 
range of military operations.   
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In Joint Vision 2020 (JV 2020), the Chairman, Joint Chiefs of Staff includes the 
following operational concepts that will support the achievement of full-spectrum 
dominance [Chairman 00]: 

1. Dominant maneuver is the ability of joint forces to gain positional advantage 
with decisive speed and overwhelming operational tempo in the achievement of assigned 
military tasks.  

2. Focused logistics is the ability to provide the joint force with the right personnel, 
equipment, and supplies in the right place, at the right time, and in the right quantity, 
across the full range of military operations.  

3. Full dimensional protection is the ability of the joint force to protect its 
personnel and other assets required to decisively execute assigned tasks.  

4. Precision engagement is the ability of joint forces to locate, surveil, discern, and 
track objectives or targets; select, organize, and use the correct systems; generate desired 
effects, assess results; and reengage with decisive speed and overwhelming operational 
tempo as required, throughout the full range of military operations. 

We find the importance of battle management within the concept of precision 
engagement.  For this technical report, we will define battle management as the decisions 
and actions executed in direct response to the activities of enemy forces in support of the 
Joint Chiefs of Staff’s concept of precision engagement. [DA 96]  Battle managers must 
rapidly make decisions to counter both enemy actions and force movements.  Battle 
managers must correctly cope with the fog-of-war conditions that are ever-present during 
the prosecution of the war.  The success or failure of the battle-management functions 
will determine the success or failure of joint forces with respect to the achievement of 
their assigned objectives.  [Douglas 99] 

Hypothesis 
We believe that it is possible to develop a globally distributed, real-time software-
intensive battle-management system that exhibits highly predictable system-software 
behavior, in which the system receives sensor information from land, sea, air, and space, 
and commits land-, sea-, air-, and space-based weapons to fire at identified targets.  
Furthermore, we believe that it is possible to employ linear temporal logic and model 
checking to a globally distributed, real-time battle-management system to develop 
desired system behavior to include the weapons-commit logic.  We believe that the 
concepts in this technical report will extend the software engineering body of knowledge 
as follows: 

1. Demonstrate that acquisition organizations can develop real-time software-
intensive distributed systems that exhibit a high degree of predictability of system 
behavior. 

2. Provide an engineering-based approach for developing a battle-management 
kernel (BMK) for missile-defense and other types of real-time systems used by 
combatant commands. 
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Battle-management software development concept 
Ballistic missile defense (BMD) serves as the case study of the complex acquisition of 
battle-management systems because BMD encompasses an amalgamation of 
characteristics that are not found in single-system developments.1 Some of the key 
characteristics of this system-of-systems are the following:  (1) a globally-distributed 
network, (2) an operational battlespace that includes land, sea, air, and space, (3) 
capability to address multiple targets that can threaten a specific theater of operations or 
region of the world,2 (4) management of concurrent battlespace activities, (5) some level 
of automated decision making regarding the release or hold of lethal weapons, and (6) 
stringent requirements for high levels of trustworthiness of the systems that provide BMD 
capabilities due to the fact that the threats to be encountered consist of weapons of mass 
destruction.  Item number six makes unpredictable system behavior untenable from the 
public-policy, functional, and safety perspectives. 

A BMK consists of the set of system components that are necessary to provide correct 
real-time execution of battle-management tasks in a system-of-systems context, both in 
nominal and degraded modes of system operation.  To provide the reader with concrete 
examples of how we propose to design and test such a kernel, we describe some of the 
software-intensive aspects of battle management, including exercising rules of 
engagement, performing discrimination and correlation, conducting feature-aided 
tracking, and estimating the launch, impact, and intercept points of threat missiles.    

A BMK is similar in purpose to an operating system (OS) kernel in that both kernels 
manage resources shared by competing entities.  In the case of an OS kernel, the 
competing entities are computer processes vying for resources such as the CPU and 
memory.  In the case of a BMK, the competing entities are all of the components of the 
system-of-systems that comprise the battle-management system, such as the C2 and 
weapon systems.  The components in the kernel are expected to be stable compared to the 
other components in the system-of-systems.  For instance, device drivers tend to be 
updated frequently and therefore in principle should not be included in the operating 
system kernel.  If they are included, and even worse, tightly coupled to OS management 
functions, then it becomes challenging to make modifications to the kernel that do not 
affect other parts of the kernel.  We would like to apply this same reasoning to BMK in 
order to simplify the design and maintenance of the kernels. 

We also draw a parallel between BMK and safety kernels.  The functions to be included 
in a safety kernel are those that must be performed to maintain a safe system state or 
bring a system back into a safe state after the occurrence of a safety-critical event.  No 
other functions may be included in a safety kernel.  An automated train protection (ATP) 
system is an example of a safety kernel.  Such kernels are well documented, validated, 

                                                 
1 A single-system development is the creation and maintenance of a system that is intended to be operated 
in isolation of other systems, or alternatively is intended to operate in a cooperative manner with other 
systems but the system is capable of operating in a standalone configuration; synonyms for this type of 
system include “stovepipe” or “standalone” system.  A system-of-systems development is an antonym for 
single-system development. 
2 The primary mission of the U.S. Ballistic Missile Defense System is to protect the United States and its 
territories from exo-atmospheric threat missiles.  However, the U.S. must also weigh the benefits and risks 
of engaging such threats within the airspace of other nations. 
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and verified before being considered for certification and accreditation.  We view battle-
management kernels in a similar light:  they must work as advertised because the ability 
of the entire system-of-systems to be able to conduct warfare in the BMD battlespace is 
dependent on the BMK. 

In our proposed approach, we envision software engineers developing the BMK as a real-
time set of system functionality that addresses its use by warfighters, starting from a 
high-level statement of capabilities and refining these statements into successively lower 
levels of system artifacts.  We define the BMK to be the software that contains the basic 
functions of battle management that will remain stable over time.  Derived from the kill 
chain, these basic battle-management functions are called tasks, and will manage the use 
of the system’s computing resources to ensure that all time-critical, battle-management 
events are processed as efficiently as possible. 

In the context of DoD capability-based acquisition, the government specifies the 
capabilities for the system that are needed by the warfighter.  The government contracts 
specify and refine the capabilities into system requirements, architectures, designs, and 
other system artifacts.  In [Caffall 03], we demonstrate how the Unified Modeling 
Language (UML) can be used to refine a system-of-systems.  In this report we extend our 
earlier investigation to include the explicit treatment of linear temporal logic for 
developing the BMK functional specifications and verifying the specifications using 
model checking. 

Discussion 
Battle management relies on two functions that influence the outcomes of battles:  
planning and command and control (C2).  For this technical report, we define planning as 
that military planning that produces either an Operation Plan (OPLAN) or an Operations 
Order (OPORD) to employ military force against an adversary.  We define C2 as the 
exercise of authority and direction by a properly designated commander over assigned 
and attached forces in the accomplishment of the mission.  

Planning includes the initial lay-down of joint and coalition forces, rules of engagement, 
provisioning, and re-supply  Planning “sets the table” for the military and establishes the 
initial ruleset that the warfighters will follow at the onset of the battle.  Planning is a 
coordinated joint staff procedure used by a commander to determine the best method of 
accomplishing assigned tasks and to direct the action necessary to accomplish the mission.  
[JCS 03]  Planning includes both the deliberate planning and crisis-action planning 
(CAP).  Combatant commanders (COCOMs) conduct deliberate planning to develop a 
military response to a future hypothetical contingency while CAP takes place in response 
to a crisis in which the United States’ national security interests are threatened and the 
President is considering a military response. [JFSC 00] 

C2 functions are performed through an arrangement of personnel, equipment, 
communications, facilities, and procedures employed by a COCOM in planning, 
directing, coordinating, and controlling forces and operations in the accomplishment of 
the mission. [JCS 03]  Through C2, the senior military leadership modifies and enhances 
the initial ruleset that governs the battlespace.  (N.B.: Battlespace is defined as the 
environment, factors, and conditions that must be understood to successfully apply 
combat power, protect the force, or complete the mission.  This includes the air, land, sea, 
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space, and the included enemy and friendly force; facilities; weather; terrain; 
electromagnetic spectrum; and the information environment within the operational areas 
and areas of interest. [JCS 03]) 

Recall from previous discussion that the Joint Staff defined Precision Engagement as 
follows:   

…the ability of joint forces to locate, surveil, discern, and track objectives 
or targets; select, organize, and use the correct systems; generate desired 
effects, assess results; and reengage with decisive speed and 
overwhelming operational tempo as required, throughout the full range of 
military operations. [Chairman 00]  

The basic construct of the definition is the identification of the functional flow of military 
activities that must occur to engage a threat object.  This functional flow of military 
activities is colloquially known as the kill chain. 

Rather than capriciously defining a kill chain for the battle-management function, we 
treat the functional flow of events that occur in the engagement of a military threat, 
starting with an examination of the original work of Colonel John Boyd (USAF, Ret.) and 
followed by the Navy’s functional construct for missile defense, the Army’s functional 
flow of events for deep operations, the Air Force’s kill chain, and the Joint Chiefs of 
Staff’s functional flow of events for theater ballistic missile defense (TBMD). 

Observe-orient-decide-act   
Colonel John Boyd was an avid student of military engagements.  From his analysis of 
the engagement actions of commanders and famous battles, he formed a concept of what 
is known today as the Observe-Orient-Decide-Act (OODA) loop.  He noted that in many 
of the engagements, one military force presented the other with a series of unexpected 
and threatening situations with which they had not been able to keep pace.  The faster 
military force eventually defeated the slower military force.  Boyd observed that military 
conflicts are time competitive. 

In the OODA Loop, Boyd incorporated a temporal aspect in his analysis of military 
decision-making before and during battle.  Decisions and actions that are delayed are 
often rendered ineffective because of the constantly changing circumstances.  When a 
military adversary is involved, the operation is not only time-sensitive but also time-
competitive.  Time or opportunity neglected by one adversary can be exploited by the 
other. [Coram 02]   

According to Boyd, military conflict can be seen as a series of time-competitive cycles 
through and OODA loop.  Each military force in a conflict begins by observing 
themselves, the physical surroundings, and the adversary.  Next, the military force orients 
itself; orientation refers to making a mental image or snapshot of the situation.  
Orientation is necessary because the fluid, chaotic nature of conflicts makes it impossible 
to process information as fast as military commanders can observe it.  This necessitates 
applying a freeze-frame concept and provides a perspective or orientation.3  Once we 
have an orientation, military commanders must make a decision.  The decision takes into 

                                                 
3 This is analogous to creating a materialized (i.e., stored) view of data by querying a database. 
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account all the factors present at the time of the orientation.  Finally, the military 
commander must implement the decision.  This requires action.  One tactical adage 
states: “Decisions without actions are pointless and actions without decisions are 
reckless.”  Then the cycle begins anew as military commanders believe that their actions 
will have changed the situation.  The cycle continues to repeat throughout a tactical 
operation. [Boyd 86] 

The military force that can consistently go through the OODA loop faster than the other 
enemy force can, ceteris paribus, gains a tactical advantage.  By the time the slower 
adversary reacts, the faster force is doing something different and the slower adversary’s 
action may become ineffective.  With each cycle, the action of the slower military force 
becomes increasingly ineffective by an increasingly larger margin.  The aggregate 
resolution of these episodes will eventually determine the outcome of the conflict.  For 
example, as long as the actions of the faster military force continue to prove successful, 
the slower military force will remain in a reactive posture while the commander of the 
faster military force maintains the freedom to act.  No matter how desperately the slower 
military force strives to accomplish its military objectives, every action becomes less 
useful than the preceding one.  As a result, the slower military force falls farther and 
farther behind.  [Boyd 86] [Coram 02] 

Detect, control, engage 
At a Millennial Challenges Colloquium presentation in April 2000, Vice Admiral Rodney 
Rempt (then Rear Admiral and Deputy Assistant Secretary of the Navy for Theater 
Combat Systems) discussed Naval theater air and missile defense for the twenty-first 
century.  He observed that some level of defense is the “price of admission” for carrying 
the battle to the shores of potential adversaries.  He discussed the threat to the Fleet of 
cruise missiles, ballistic missiles, fighter-bombers, and unmanned aerial vehicles 
(UAVs); these threats are steadily increasing in lethality, accuracy, and range.  Hence, 
Vice Admiral Rempt concluded that the Naval theater air and missile defense must 
formulate and apply a concept of Detect, Control, and Engage. [Rempt 01] 

For the detect aspect of Naval theater air and missile defense, the concepts of multi-
spectrum sensor netting and data fusion must be realized from a variety of active sensor 
arrays, passive staring infrared sensors, and bistatic sensors.  The timely and accurate 
detection of current and future threats is absolutely essential in triggering military action 
to negate the threat. 

For the control aspect, the Navy must realize a network of planning tools, automated 
decision aids, and the single integrated battle space.  The Navy must develop solutions to 
potential threats before the threats are realized.  Planning and identifying potential 
engagement zones, rules of engagement, and consequence management will become 
critical to the success of Naval theater air and missile defense. 

For the engage aspect, the Navy must be able to deliver the appropriate force to negate 
current and future threats to the Fleet and its defended assets.  The received information 
must be processed in a timely fashion so that Naval officers can make timely decisions 
for engaging potential threats.  Indecision due to inconclusive or untimely information 
will have catastrophic consequences to Fleet assets.  
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Decide, detect, deliver, and assess   
The Army defines targeting as the process of selecting targets and matching the 
appropriate response to them on the basis of operational requirements and capabilities.  
COCOMs use the functional construct of decide, detect, deliver, and assess to transform 
a COCOM’s targeting intent into an engagement. 

The emphasis of targeting is on identifying resources the enemy can least afford to lose 
or that provide him the opposing force with the greatest advantage, then further 
identifying the subset of those targets which must be acquired and attacked to achieve 
success.  Denying these resources to the enemy make the enemy’s military assets 
vulnerable to COCOMs’ battle plans.  These resources constitute critical enemy 
vulnerabilities.  Successful targeting enables the COCOM to synchronize intelligence, 
maneuver, fire-support systems, and in addition to special operations forces, by attacking 
the right target with the best system and munitions at the right time. 

The decide function, as the first step in the targeting process, provides the overall focus 
and sets priorities for collecting intelligence and planning attacks. Targeting priorities 
must be addressed for each phase or critical event of an operation.  

Detect is the next critical function in the targeting process. The intelligence cell is the 
main figure in directing the effort to detect high-payoff targets identified in the decide 
function. This process determines accurate, identifiable, and timely requirements for 
collection systems.  

The deliver function of the targeting process executes the target attack guidance and 
supports the COCOM's battle plan once the high-payoff targets have been located and 
identified. Some targets will not appear as anticipated. Target attack takes place only 
when the forecasted enemy activity occurs in the projected time or place. The detection 
and tracking of activities associated with the target becomes the trigger for target attack. 

Combat assessment is the determination of the effectiveness of force employment during 
military operations.  On the basis of battle damage assessment (BDA) reports, the 
COCOM continuously estimates the enemy's ability to make and sustain war and centers 
of gravity. During the review of the effects of the campaign, re-strike recommendations 
are proposed or executed.  BDA is the timely and accurate estimate of damage resulting 
from the application of military force, either lethal or non-lethal, against a target. BDA in 
the targeting process pertains to the results of attacks on targets designated by the 
commander. [DA 96] 

Find, fix, track, target, engage, assess   

According to General John Jumper (Chief of Staff of the United States Air Force), 
today’s Air Force is a “community of stovepipes.”  General Jumper wants to achieve 
horizontal integration that he defines as the “…ability to fuse data from every Air Force 
platform into a single repository of information, such as crews, planes, targets, and 
loads.”  His vision is to achieve horizontal integration is the accomplishment of the entire 
“kill chain” from a single source of information.  General Jumper defines the kill chain as 
find, fix, track, target, engage, and assess. [Erwin 02] 
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As avowed by Lieutenant General Leslie Kenne (Air Force Deputy Chief of Staff for 
Warfighting Integration), the Air Force must “close the seams” in the kill chain by 
“integration of manned, unmanned, and space systems.”  Historically, technology limited 
the flow of information.  Battlefield information delivery was limited to the speed of the 
horses and the ability of the commander to assess the battlefield information from afar.  
Execution was centralized as only the commander had the situational awareness of the 
entire battlefield.  Consequently, reinforcement troops had no time to gain situational 
awareness.  Thus, troops had to rely on their commander to direct their movements and 
placements, and hoped that the enemy had not conducted movements that countered the 
commander’s situational awareness. [Kenne 03] 

Today, technology provides the potential to maintain situational awareness for the entire 
military force.  The military has developed an interconnected network of information 
with the objective of providing timely and accurate information to all points of the 
battlespace.  The stovepipes discussed by General Jumper prevent the achievement of this 
objective and prevent effective battle-management in the battlespace. 

Detect, identify, locate, track, destroy   
In recent years, the threat of missile attack to American forces and allies in foreign lands 
has dramatically increased.  Numerous nations own missiles that has forced the United 
States to address this potential threat. The proliferation of theater missiles, advances in 
missile technology, and the pursuit of weapons of mass destruction have provided 
potential adversaries with a lethal-attack capability against United States’ interests.   

As outlined by the Joint Chiefs of Staff, theater missile defense applies to the 
“…identification, integration, and employment of forces supported by other theater and 
national capabilities to detect, identify, locate, track, minimize the effects of, and/or 
destroy enemy [theater missiles].”  Through this process, military commanders should be 
capable of countering threats from theater missiles and have the capability for rapid 
global deployment and theater mobility.  [JCS 96] 

For this technical report, we will employ a kill chain that is defined by the following five 
functions:  Detect, Track, Assign Weapon, Engage, and Assess Kill.  These five 
functions address all the functions outlined in the definition of precision engagement to 
which the Joint Chiefs of Staff subscribe, in addition to all of the functions identified in 
the Boyd, Navy, Army, Air Force, and Joint Chiefs of Staff functional models.   

Of the five kill chains described in the preceding paragraphs, only the Army and the Air 
Force identified an assess function that is required to determine whether the threat object 
is indeed negated.  The assess function is essential to complete the engagement as defined 
by the Precision Engagement.  The fix function of the Air Force kill chain is captured 
within the track function of our defined kill chain. 

As can be observed in Table 1, the proposed kill chain proposed is complete with respect 
to addressing the major functions required to negate a threat object. 
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Statement of the problem 
To appropriately frame the problem, we would once again recall the Joint Chiefs of 
Staff’s definition for precision engagement:   

…the ability of joint forces to locate, surveil, discern, and track objectives 
or targets; select, organize, and use the correct systems; generate desired 
effects, assess results; and reengage with decisive speed and 
overwhelming operational tempo as required, throughout the full range of 
military operations. [Chairman 00]  

In March of 2003, Joint Forces Command identified eight key shortfalls in the desired 
achievement of effective Joint Task Force Command and Control.  Those shortfalls 
include incomplete shared situational awareness, inadequate information superiority, and 
insufficient joint and coalition interoperability. [JFC 03]  (N.B.:  For this report, we 
define interoperability as the ability of systems, units, or forces to provide services to and 
accept services from other systems, units, or forces and to use the services so exchanged 
to enable them to operate effectively together.) 

In a December 1997 report to Congress on the National Missile Defense (NMD) system, 
the General Accounting Office (GAO) identified technical issues in discrimination and 
data fusion.  Additionally, the GAO reported the average time to develop major weapon 
systems is 9.9 years based on an analysis of fifty-nine acquisition programs. [GAO 97]  
This observation bolstered the claims of defense acquisition critics that development 
cycles are too long, too costly, and provide too little required functionality. 

In his book “Software Fundamentals:  Collected Papers by David L. Parnas,” Dr. Parnas 
outlines six major characteristics of the battle-management software in the Strategic 
Defense Initiative (SDI) program (known today as the Ballistic Missile Defense System).  

Boyd Navy Army Air Force JCS Technical Report 

Observe Detect Decide 

Detect 

Find 

 

Detect Detect 

Orient   Fix 

Track 

Identify 

Locate 

Track 

Track 

Decide Control  Target  Assign Weapon 

Act Engage Deliver Engage Destroy Engage 

  Assess Assess  Assess Kill 

Table 1.  Summary of Kill Chains 
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[Parnas 01]  The below issues are as relevant today as during the time when Dr. Parnas 
published his observations: 

The battle-management software must identify, track, and direct weapons towards targets 
whose characteristics may not be known with certainty until the moment of battle.   The 
battle-management software must discriminate the threat objects from decoys and debris. 

1. The battle-management computing will be accomplished through a network of 
computers that are connected to sensors and weapons as well as other battle-management 
computers.  The behavior of the battle-management software cannot be predicted with 
confidence given the actual configuration of weapons, sensors, and battle managers at the 
moment of battle. 

2. Developers cannot test the battle-management software under realistic 
conditions prior to actual use of the software. 

3. The duration of the defense engagement will be short:  it will not allow for 
either human intervention or debugging the software to overcome software faults at 
runtime. 

4. The battle-management software will have absolute real-time deadlines for the 
computation that will consist of periodic processes to include detecting and identifying 
potential threat missiles, assigning a weapon to engage the threat missile, and providing 
an assessment of the interceptor-threat missile engagement.  Because of the 
unpredictability of the computational requirements of each process, developers cannot 
predict the required resources for computation.  

5. The missile defense system will include a large variety of sensors, weapons, and 
battle-management components for which all will be large, complex software systems.  
The suite of weapons and sensors will increase in number as the development progresses.  
The characteristics of these future weapons and sensors are not well defined and will 
likely remain fluid for many years.  Additionally, all weapons and sensors will be subject 
to change independently of each other.  As such, the battle-management software must 
integrate numerous dynamic software systems to the extent that has never before been 
achieved.   

Given the above observations, we believe that the battle-management software must 
overcome the problems that are summarized in Table 2. 
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Issue Comment 

Incomplete Shared 
Situational 
Awareness 

Because of the numerous stovepipe developments, situational 
awareness is inconsistent among the networked platforms. 

Inadequate 
Information 
Superiority 

Because of the numerous stovepipe developments, information 
tends to remain within a single system platform. 

Insufficient 
Joint/Coalition 
Interoperability 

Because of our attempt to network our systems through 
interconnection rather than integration, joint and coalition 
remains limited in the operational battlespace. 

Inadequate 
Discrimination 

Because of differing algorithms in our systems as well as 
limitations in our interconnectivity solutions for networking, 
our systems cannot quickly and accurately discriminate decoys 
and debris from actual threat objects. 

Unpredictable System 
Behavior 

Because of the stovepipe developments of our systems and the 
interconnectivity solutions for our networking, the behavior of 
our systems are largely unknown. 

Inadequate System 
Testing 

Because of the shortened acquisition timelines as well as the 
increased complexity of our systems, system testing is 
primarily that of a test of selected functional threads. 

Critical Software 
Faults at Runtime 

Because of the short time duration of military engagements and 
the safety-critical nature of our systems, we must field our 
systems with undiscovered major critical software faults. 

Real-Time 
Computational 
Deadlines 

Because of the short duration of military engagements and the 
intensity of the battlespace, we must know that the most critical 
software tasks will be executed without fail. 

 

Complex Integration 

Because of the dynamic nature of potential threats and the 
requirement to enhance our systems as the threat increases in 
delivery and lethality, we must have the ability to quickly 
modify our systems and function as a single system-of-systems. 

Prolonged 
Development Cycle 

We must develop acquisition methodologies to reduce the 
acquisition cycles from nearly ten years to under a year to 
achieve essential military capabilities. 

Table 2.  Summary of Issues 
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Significance of the problem   
Given that the interconnected battle-management solutions in the system-of-systems 
environment are separately designed and developed on various operating platforms in 
different languages, predicting battle-management behavior of the system-of-systems is 
not possible.  As a rule, battle management is still executed at the system level rather than 
the desired system-of-systems level.  (N.B.:  In this technical report, we define a system-
of-systems as an amalgamation of legacy systems and developing systems that provide an 
enhanced military capability greater than that of any of the individual systems within the 
system-of-systems.) 

Another factor that contributes to the challenge involved in predicting battle-management 
behavior is the acquisition practices currently employed in DoD.  The increased pressure 
to rapidly move product into the operational battlespace tends to channel program 
managers into focusing on achieving functionality as quickly as possible.  As such, the 
development community responds with a hurried and oftentimes inadequate design phase 
and follows with an intense period of coding.  In the rush to rapidly develop a product, 
one can fall into the trap of exclusively seeking some level of achieved capability while 
ignoring the behavior of the software. 

Because we cannot readily predict the system behavior of legacy battle-management 
systems, we tend to fulfill battle-management requirements as a new development.  
While the basic five functions do not change from system to system and from year to year, 
we choose to acquire a new battle-management system as a new development.  What 
changes are the sensors used to collect information for the warfighters, the weapons used 
to engage threat targets, and the rules of engagement (ROEs) established in both the 
planning and the C2 functions.   

Specific features within the battle-management software will change over time (e.g., 
discrimination algorithms, correlation algorithms, feature-aided tracking); however, we 
can isolate those features in components that can be interchanged at a time when 
developers are prepared to introduce new technology into the battle-management 
software. 

Focus and scope 
We recommend that the DoD consider adopting an architectural framework that treats the 
BMK as the meta component that binds the system-of-systems together.  The BMK will 
transcend time in the sense that we envision it will be relatively stable and unchanged as 
compared to the components interfaced to the BMK. 

We advocate the development of battle-management software as a real-time set of system 
functionality that addresses warfighter usage.  To achieve the level of desired predictable 
system behavior, we maintain that it is essential to develop a formal representation that 
captures the desired system behavior of the battle manager and to test the formal 
representation against the expected battle-management properties, such as schedulability 
and concurrency.   

From the table of identified battle-management issues (vid.Table 2), we will address 
those identified issues in the BMK. 
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Inadequate information superiority 

We propose a software architecture that allows for different sensors to provide 
information to the BMK.  In most weapon systems, the sensor is one of three major 
components:  sensor component, weapon component, and a C2 component.  (N.B.: In this 
technical report, we define a component as a software unit of composition with 
contractually specified interfaces and explicit context dependencies.)   

Typically, the sensor information is processed locally within the weapon system.  If 
information is shared with other weapons systems, the control component transmits 
processed information onto a network within the confines of the network protocol (e.g., 
Link 11, Link 16, Tactical Information Broadcast Service (TIBS), Tactical Related 
Applications (TRAP), Variable Message Format (VMF)).  Information loss or 
misinterpretation of the information can result from the translation of one protocol to 
another, or between systems employing different implementations of the same protocol. 

We propose to treat sensor as a separable component and connect it to the BMK as 
depicted in Figure 1.  We will pull selected information from the sensor processor and 
transmit that information to the BMK.  The BMK will process the information and 
provide correlated tracks to the connected C2 centers.   

Inadequate discrimination 

We will not attempt to explicitly address the discrimination problem in this technical 
report; however, we recognize discrimination as a feature that could change frequently as 
developers introduce new technology and new algorithms to battle-management systems.  
As such, we will use a software component to isolate discrimination as depicted in Figure 
1 so that future upgrades such as advanced discrimination algorithms can be inserted in 
the discrimination component of the framework. 

Incomplete shared situational awareness. 

We propose a software framework that allows for a common scheme for correlation of 
track information from different sources and providing that correlated information to 
command and control centers.  We propose that correlation software be developed and 
maintained as a software component that interfaces with the BMK. 

Insufficient joint/coalition interoperability 

The integration of legacy systems into a system-of-systems is a difficult task for 
acquisition organizations for many reasons to include coupling and cohesion that result in 
limited interoperability among systems.  Our system-of-systems are interconnected 
systems that display a high degree of coupling and a low degree of cohesion. [Caffall 03]  
Legacy systems within the system-of-systems are based on different technologies and 
different implementations.  As such, with the high degree of coupling, modifications to 
the software in the legacy systems could have a negative ripple effect in the behavior of 
the system-of-systems.  Critics of system-of-systems acquisitions perceive a limited 
development process that does not consider the integration of timing predictability and 
fault-tolerant characteristics.  [Meyers 01] 
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It is neither cost- nor time-effective to rewrite all the software in the BMD sensors, 
weapons, and C2 components.  As previously noted, we developed each system 
independently of all the other systems.  As such, each system’s software is different with 
respect to architecture, design, missions and functions, language, operating systems, and 
persistent data storage schemes. 

We believe that it is possible to develop an integrated BMK that significantly reduces the 
messaging among the systems in existing system-of-systems by using state changes in 
shared memory.  This in turn, ceteris paribus, could increase the degree of 
interoperability between the battle-management function and the sensors, weapons, and 
C2 components. [Stewart 01]  With the development of the BMK as real-time software, 
we can match the performance of the weapon systems and avoid the negative impact of 
forced synchronization of the battle manager with the sensors, weapons, and C2 
components in the system-of-systems. 

Rather than depending on a universal interface protocol such as military standard for 
Link 16 [DOD 02], we propose type interfaces for the BMK.  We believe that we can 
achieve a higher degree of interoperability than what we currently experience by 
developing a number of smaller interfaces into the BMK rather than a single large 
interface as in the Link 16 military standard. 

We recommend capturing desired system behavior in the interface definition rather than 
depending solely on messaging requirements as in the Link 16 military standard.  
Developers should maintain the BMK interfaces as separable, configurable items from 
the BMK.  We propose constructing interfaces by type for BMD; that is, software 
engineers should consider constructing interfaces for ballistic missile defense elements 
such as an infrared sensor type, a radar type, a kinetic energy weapon, and a directed 
energy weapon. They must require that each instantiation of an interface type will include 
all the attributes and operations of its parent type similar to the concept of class 
inheritance in which a subclass inherits attributes and operations from its parent. [Booch 
94]  We propose that the definitions interfaces follow the conventions set forth in 
[Bachman 02]: 

Interface Identity.  Identify the name, component type, and version.  Each interface will 
have a unique identify. 

Interface Usage Definition.  Specify the overall system behavior for which the interface 
will provide or receive services or data.  Additionally, we will identify system-timing 
requirements for the interface. 

Provided Resources.  Identify the specific resources that the interface provides to the 
BMK.  This will include the information that other software programs will require to 
invoke the interface as well as the result of invoking the interface.  Additionally, we will 
provide interface usage restrictions that define under what conditions the interface may 
be invoked. 

Defined Data Type.  Identify the data types used in the interface to include the 
programming language, declaration of variables and constants, operations that may be 
performed on data types, and instructions on how to convert the values of the interface 
data type into other data types. 
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Error-Handling Capability.  Provide the error conditions that might occur through the 
interface (e.g..; message translations from one protocol to another, out of bound values, 
illegal values).   Additionally, provide the error-handling behavior of the interface. 

Interface Characteristics.  Identify the characteristics of the interface attributes to include 
data precision, data formats, reliability, timing, and constraints. 

Interface Requirements.  Identify the resources required from the software component 
that invokes the interfaces to include syntax, semantics, and usage restrictions. 

Unpredictable system behavior   

As previously discussed, software engineers cannot easily determine the system behavior 
of current battle-management systems.  In the domain of the BMD, the BMK behavior 
must be predictable and must respond immediately to hostile actions of potential 
adversaries.  The warfighters must have confidence that the battle-management software 
will perform its critical tasks as designed, and will not exhibit inappropriate system 
behavior such as reporting false ballistic-missile threats and issuing engagement 
commands for non-existent ballistic-missile threats. 

In the operational battlespace, the BMK will control the behavior of various weapon 
systems over a global control network.  Based on processed information within the BMK, 
it will report ballistic-missile threats to all layers of management up to the President of 
the United States.  The BMK will assign a weapon to engage each detected ballistic-
missile threat and order the engagement of each ballistic-missile threat.   

It is neither feasible nor cost-effective to rewrite all the software in the sensors, weapons, 
and C2 components.  As previously discussed, we developed each system independently 
of all the other systems.  As such, each system’s software is different with respect to 
architecture, design, missions and functions, language, operating systems, and persistent 
data storage schemes. 

We believe that what is possible is to develop the BMK with predictable system behavior.  
Given that the BMK determines the existence of a ballistic-missile threat and orders the 
engagement of the ballistic-missile threat, we believe that predictable system behavior of 
the BMK will significantly improve the overall predictability of the BMD system-of-
systems. 

To achieve the level of desired predictable BMK behavior, software engineers could 
develop a formal representation that captures the desired system behavior of the BMK 
and verify the formal representation against the expected BMK properties. 

We recommend that software engineers develop the formal representation of the BMK by 
using metric temporal logic (an extension of linear temporal logic [Drusinsky 02]) to 
describe the BMK functional specifications.  To avoid the state-explosion problem, 
software engineers must carefully model the fundamental behavior of the BMK rather 
than a comprehensive specification of the BMK.  [Gluch 99] [Lewis 01]  Recall that the 
BMK will be real-time software.  Therefore, the formal model of the BMK should be 
state-based as we desire to effect change in the sensors and weapons through state 
changes rather than messaging. 
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For example, consider the assigning of a weapon to an identified threat-ballistic missile.  
In typical C2 systems, the battle-management function sends a message to each weapon 
that a threat exists.  After some time, the battle-management function sends a message to 
a specific weapon to engage the threat-ballistic missile and sends messages to the other 
weapons not to engage the threat-ballistic missile.  In the BMK, we will use logic to 
determine the threat exists and change the state status of the ballistic-missile threat in 
shared data memory from INACTIVE to ACTIVE.  After using logic to determine which 
weapon has the best shot opportunity, the BMK will assign that weapon to engage the 
active ballistic-missile threat by pairing the weapon to the ballistic-missile threat and 
changing its engagement status from INACTIVE to ENGAGE in the shared data memory. 

Software engineers should consider the use of an automated model-checking tool to 
verify that the formal BMK model reaches each desired state as designed.  The automated 
tool will determine whether the logic is appropriate to reach each state and whether the 
logic prevents reachable states inappropriately.  With respect to the real-time aspects of 
the BMK software, we will use the model checker to: (1)  determine whether a deadlock 
condition occurs, (2) ensure that the BMK executes the critical tasks under all battlespace 
conditions to include overload conditions, and (3) the system reaches each desired state 
within its time constraints. [Guaspari 00]  The result of the state-based model verification 
will be the substantiation or repudiation of the desired BMK behavior. [Lewis 01] 

Software engineers could address the so-called “state-explosion problem” by employing 
symbolic model checking.  That is, they should abstractly represent a set of states by 
using a compact description rather than an explicit listing of all states. [Gallardo 03]  The 
abstract model should be effective in uncovering BMK behavior errors with only a 
portion of the state space explored. [Chen 03] 

Inadequate system testing   

By incorporating assertions developed from the functional model and verified by the 
model-checking effort into the BMK, software engineers can develop embedded 
automatic test generation capabilities.  Assertions have multiple benefits to include 
automated testing without pre-generation of expected results, debugging the BMK   
software, and reduced diagnostic time for identifying the subtle bugs within the BMK 
software.   [Binder 01] 

Critical software faults at runtime 

Software engineers could incorporate assertions and error-handling schemes developed 
from the functional model and verified by the model-checking effort into the BMK.  The 
error-handling schemes for breaks in logic will benefit the warfighters by either 
developing an automated logic-break recovery or notifying the warfighters of required 
manual actions. 

Real-time computational deadlines 

System-of-systems functional and performance expectations of the users continue to 
increase as the acquisition community continues to develop and field the products of C4 
systems and weapon systems integration.  The class of systems in which C2 and Battle-
management are contained are called Command, Control, Communications, and 
Computers (C4) systems.  Typically, C4 systems are non-real-time systems.  
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Traditionally, weapon systems are real-time systems.  [Meyers 01]   If we are to match 
the performance of the weapon systems and avoid the negative impact of forcing 
synchronization of the battle manager with the weapon system for messaging, then we 
must develop the battle manager as real-time software. 

We advocate developing the BMK as real-time software that will be run on top of a hard-
tasking, real-time operating system to ensure the schedulability of battle-management 
tasks and the concurrent nature of battle-management systems.  A real-time defense 
system must exhibit the following behaviors [Douglas 99] [Sha 93]: 

1. Predictable and immediate response to precarious battlespace conditions. 

2. High degree of task schedulability.  (N.B.:  For this report, schedulability is 
defined as the degree of resource utilization for which the timing requirements of tasks 
can be assured.) 

3. Stability under transient overload.  If the real-time defense system is overloaded 
by multiple battlespace conditions and the system cannot meet all of its scheduled 
deadlines, then the real-time system must guarantee that it will meet the deadlines of the 
most critical tasks. 

Frequently, non-real-time systems implement inputs and outputs as messages that works 
well in a non-real-time environment.  Message passing in real-time systems does not 
work well for the following reasons [Stewart 01]: 

1. Message passing requires synchronization between the message sender and the 
message receiver.  This is a significant source of unpredictability in real-time scheduling 
of software tasks given that functional blocks of code execute synchronously to pass 
messages.  Consequently, the analysis of the real-time system timing may prove to be 
impossible. 

2. A significant opportunity for deadlock exists in real-time systems that attempt to 
incorporate either bi-directional communication between software processes or a 
messaging feedback loop.  A better solution would be to use a state-based system.  
Software processes can bind to a single element in a state variable table.  This would help 
to eliminate synchronization dependencies among software processes. 

3. Messaging software schemes require significantly more overhead (e.g., error 
correction coding, interleaving methods, messaging protocol communications) than 
systems that use shared-memory techniques.  Although messaging may be necessary for 
communications across networks, messaging is not efficient if random-access to the data 
is possible as is the situation for communications among software processes within a 
single processor. 

Complex integration 

We will identify the BMK functions that will experience frequent change during the 
operational phase of the acquisition lifecycle.  We propose that these functions be 
transformed into software components (as defined in [Szyperski 02]) in order to reduce 
the complexity of software integration. 
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Prolonged development cycle 

We believe that the BMK can serve as the basis for future battle-management systems.  
We believe that a developer could use the BMK as the core element to connect sensors, 
weapons, and user displays to provide the essential basic battle-management capabilities 
in a timeframe measured in months rather than years. 

BMK development strategy 
We believe that software engineers should consider developing the BMK as a real-time 
set of system functionality that addresses warfighter usage with respect to the kill chain.  
In this approach, they would develop a framework that contains the proposed BMK as 
well as contains battle-management software components that will experience the most 
change during the acquisition life cycle of a battle-management system. 

As the initial step to the BMK development, we recommend performing a domain 
analysis of the battle-management functions.  During this type of analysis, software 
engineers could derive warfighter usage requirements from battle-management use cases.  
They could refine the use cases as we develop sequence diagrams to depict the messaging 
requirements among the derived classes from the use cases.  Software engineers could 
develop a state diagram for the BMK to identify the desired battle-management behavior.  
To conclude the domain analysis, they should identify and verify assumptions on battle-
management operations to support the development of BMK specifications. 

From the iterative review and refinement of these artifacts, software engineers could 
develop detailed specifications that focus on defining BMK behavior and achieving 
battle-management goals.  They should consider the use of logic to describe the BMK 
specifications. 

We recommend the verification of the functional specifications with the use of a model-
checking tool to determine the degree of system behavior predictability with respect to 
state transitions and tolerance to battlespace environmental variables.  The verification 
should focus on ensuring that the BMK can meet the specifications and exhibits the 
desired behavior.  Software engineers might design test oracles that contain the full range 
of battle-management variables that are both within and outside the expected range of 
operational values for the ballistic missile defense. 

Plan of execution for the BMK design and development 
The BMK will act as “glueware” between software applications unique to each battle-
management domain, and the sensors, C2 systems, and weapon systems in that battle-
management domain.  That is, the BMK will execute the five kill-chain functions by 
calling upon various components for computation.    

We recommend the identification of the required interfaces into the BMK include sensors, 
weapons platforms, and C2 systems.  Rather than point-to-point interfaces, we propose 
the development of type interfaces that define the behavior of each interface and the 
required specifications to realize each interface.  We propose that the interfaces be 
developed and maintained as separate configurable items to preserve the identity of the 
interface and to minimize the opportunity for multiple versions of the interface.  
Additionally, it is important the interface identifies its operations and does not specify 
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implementations of its operations.   [Crnkovic 02]  This is frequently the case as 
interfaces are developed within the application software. 

For ease of integration and maintainability, we propose the development of software 
components for the features that typically experience the majority of changes.    
Developers can realize a component-based framework with less effort and without 
unwieldly upgrade cycles as compared to fully integrated, monolithic software solutions.  
Additionally, a component-based framework allows for tailoring of the framework to 
address specific user needs. [Szyperski 02]  For this report, we identify software 
components that include enforcing rules of engagement, conducting discrimination and 
correlation, performing feature-aided tracking, and estimating launch, impact, and 
intercept points. 

Domain analysis   

The first task is to construct a domain analysis of the BMD space to uncover the desired 
behavior of the BMK.  Software engineers should base the domain analysis on the five 
functions of the kill chain identified for use in this technical report:  Detect, Track, 
Assign Weapon, Engage, and Kill Assessment.  The domain analysis should include use 
cases, sequence diagrams, and state diagrams.  The goal should be to characterize the 
desired BMK behavior in the domain analysis.  As a point of departure, software 
engineers can start with the conceptual framework described in [Caffall 03].  In the 
referenced work, we developed design artifacts for the ballistic missile defense system-
of-systems.  This work is directly applicable to developing the BMK given that the 
artifacts are modifiable to focus on the problem statement in this technical report. 

Specifications   

The second task will be to construct a set of specifications using temporal logic that will 
serve as a model of the BMK.  The goal is to achieve a greater degree of clarity and focus 
in the specification of the desired BMK behavior as compared to traditional list of system 
requirements. 

We recommend that software engineers develop a sufficient amount of information to 
automatically produce test cases for the implementation.  Otherwise, they run the risk of 
developing so-called “cartoon models” that are only useful for drafting and refining 
potential solutions.  Software engineers need to develop test-ready models of the BMK. 
In order to be testable, a model should contain all the features of the BMK, preserve 
sufficient detail that is critical for discovering faults, and faithfully represents the 
essential states, actions, and transitions in the state diagram. [Binder 01] 

If the BMK model is to be useful for this effort and in future acquisition efforts, it must 
exhibit the following properties outlined in [Selic 03]: 

Appropriate level of abstraction.  A model is a representation of some entity.  In the 
development of the representation, modelers abstract away details that is not necessary 
for others to gain an understanding of the fundamental nature of the represented entity.  
As modelers abstract away details, they must ensure that the core capabilities of the 
represented entity are captured in the model.  
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For the BMK model, we want to capture the essential functionality of the battle-
management function and we want to capture the functionality defined in the interfaces to 
the BMK.  It is not important to model the actual processing involved with each of the 
five functional areas; however, we must ensure that we model the generation of triggers 
for state transitions. 

High degree of understandability.  A model must describe the abstracted system behavior 
in a clear and logical manner to both the software engineer and the software maintainer.  
If either party cannot understand the model, then the model hold limited utility in the 
software lifecycle acquisition.   

For the BMK model, we want to depict the battle-manager behavior in a logical fashion 
so that the designer can faithfully realize the BMK specifications in accordance to the 
artifacts developed in the domain analysis.  Additionally, an understandable model 
supports software integration and software maintenance efforts. 

High measure of accuracy.  Although we desire to hide the unimportant details of the 
BMK, it is important to accurately specify the details and the associated parameters to 
ensure that the model will provide utility to the software engineer.  Additionally, the 
model must yield outputs that are within defined error bounds to ensure the model 
faithfully represents the desired system. 

For the BMK model, software engineers should capture the desired parameters in the 
logic statements.  We must accurately capture the BMK response requirements such as 
the maximum allotted time from track identification to weapon assignment on that track.  
We must accurately capture the BMK required calculation requirements such as the 
location ellipse of a tracked object.  We must accurately capture BMK limits such as the 
maximum number of concurrently tracked objects. 

High level of  predictiveness.  The model must correctly and consistently mirror the 
behavior of the desired system.  For example, given that the system is in a known state 
and given the known inputs, the model should transition to the appropriate state without 
fail.   

For the BMK model, we must ensure that the model faithfully represents the behavior of 
battle-management operations.  We must ensure that the BMK states are reached 
appropriately and the transition triggers are reflective of the projected BMD battlespace.  
For example, the model must transition from the state in which tracking occurs to the 
state in which a weapon assignment occurs each and every time the model is presented 
with the appropriate transition events.  Just as important, the model must not transition 
for events other than what was designed for the BMK. 

Software engineers should consider using temporal logic to define assertions for the 
BMK specifications.  We believe that the use of assertions through temporal logic will 
yield specifications that are verifiably consistent and accurate.  We believe that the use of 
assertions through temporal logic will result in verifiably predictable BMK behavior. 

It is our experience that the vast majority of engineers involved with acquisition of 
software-intensive systems are not familiar with software formalisms.  Additionally, we 
assert that few of the many system engineers in acquisition could follow temporal logic 
without some level of instruction.  As such, software engineers may choose to minimize 
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the use of typical temporal logic symbols and attempt to develop the specifications in as 
close to natural language as possible while still maintaining the degree of rigor that 
temporal logic lends to specification development.   

This approach is necessary to gain buy-in from system engineers and engineering 
managers.  Acquisition efforts require significant commitments of human and financial 
capital.  Introducing new acquisition methods to replace that which is familiar and 
comfortable is generally viewed as risky and foolish.  Proposed changes must be readily 
evident to system engineers and engineering managers, or the proposed changes will not 
be adopted.  As an example of this approach, we offer the following example of assigning 
a weapon to a tracked object: 

User Goal:  Assign a Weapon to a Tracked Object 

Narrative:  The BMK must assign a weapon to engage a threat object before it impacts or 
detonates over pre-designated defended area.  The BMK must determine whether the 
tracked object is a ballistic-missile threat.  The BMK must determine whether the 
predicted impact point is within the defended area as defined by military planners.  The 
BMK must determine which weapons are available.  The BMK must determine which 
weapon(s) can engage the tracked object.  The BMK must assign the appropriate weapon 
to prosecute the engagement of the tracked object. 

The logic to assign a weapon to a tracked object is as follows: 

Weapon assigned to track object is true iff: 
 (Tracked object is a ballistic-missile threat) & 
 (Predicted impact point is within defended area) & 
 (Weapon is available) & 
 (Weapon interceptor capability is adequate)  

We would outline the specification as follows: 

Variables: 

Boolean:  Weapon_Assigned 
// Weapon assigned to tracked object is true 
 
Boolean:  Ballistic_Threat 
// Tracked object is ballistic-missile threat 
 
Boolean:  IPP_Within_Defended_Area 
// This statement is true if the predicted impact point lies inside the 
physical dimensions of the defended area.   
 
Boolean:  Weapon_Available 
// True if one or weapons are capable of immediately launching an interceptor. 
 
Boolean:  Intercept_Point_Min_Within_Intercept_Range 
// True if the minimum intercept point lies within the interceptor range volume. 
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Boolean:  Unknown Track 
// True if track object has yet to be identified as a ballistic-missile threat 
 
Set:  Tracked_Object 
// Contains detected characteristics of a ballistic-missile threat 
 
Multiset:  Threat_Profile 
// Contains sets of characteristics for known ballistic-missile threats 
 
String:  Tracked_Object_Status 
// Identifies status of Tracked_Object.  Will be Active, Killed, Hit, or Dropped 
 
Integer:  Unknown_Track_Life 
// Time duration from detection to present time – expressed in seconds. 
 
Boolean:  IPP_Within_Defended_Area  
// True if IPP of ballistic-missile threat lies within defended area 
 
Real: IPP_Latitude 
// Latitude of IPP 
 
Real:  IPP_Longitude 
// Longitude of IPP 
 
Real:  Defended_Area_Max_Latitude 
// Maximum latitude value of defended area 
 
Real:  Defended_Area_Min_Latitude 
// Minimum latitude value of defended area 
 
Real:  Defended_Area_Max_Longitude  
// Maximum longitude value of defended area 
 
Real:  Defended_Area_Min_Longitude 
// Minimum longitude value of defended area 
 
Boolean:  Weapon_Status_Operational 
// True if weapon is operationally available to fight 
 
Boolean:  Weapon_Launcher_Armed 
// True if weapon launcher is armed and ready to fire 
 
Set:  Min_Intercept_Point 
// Minimum intercept point at which an intercept at points closer to defended area would 
result in negative consequences to the defended area.  Expressed in longitude and latitude.  
Typed as a set. 
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Multiset:  Interceptor_Range_Volume 
// All points within the range of the interceptor.  Expressed in longitude and latitude. 
 

Assertions: 

 Always Weapon_Assigned <=> ((Ballistic_Threat) & 
  (IPP_Within_Defended_Area) & (Weapon_Available) &  

(Intercept_Point_Min_Within_Intercept_Range)) 
 
 Always Ballistic_Threat <=> (Unknown_Track) Until  

(Tracked_Object ∩ Threat_Profile) &  
(Tracked_Object_Status = Active) &  
(Unknown_Track_Life) < 60 

 
Always IPP_Within_Defended_Area <=> (IPP_Lattitude <  
Defended_Area_Max_Latitude) & (IPP_Lattitude > Defended_Area_Min_Latitude) 
& (IPP_Longitude <  
Defended_Area_Max_Longitude) & (IPP_Longitude > 
Defended_Area_Min_Longitude) 

 
 Always Weapon_Available <=> (Weapon_Health_Operational) & 
  (Weapon_Launcher_Armed) 
 

Always Intercept_Point_Min_Within_Intercept_Range <=> 
(Min_Intercept_Point ∩ Interceptor_Range_Volume) 

Model checking 

Software engineers should verify the functional specifications by employing the 
techniques of model checking.  For this report, we will define model checking as the 
systematic approach for testing functional assertions and substantiating the desired 
system behavior in the model. Model checking is not a proof of correctness; however, 
model checking involves creating functional models of a system and analyzing the model 
against the formal representations of the desired behavior. [Lewis 01] 

For the BMK, software engineers should verify the functional specifications using an 
automated model-checking tool that can accept the developed specifications and exercise 
the assertions over a number of time cycles.  They should identify any inconsistencies 
and breaks in logic through the use of the model-checking tool.  From the results of the 
model checking, software engineers can correct our specifications and the artifacts from 
the domain analysis as required. 

Software engineers must be cognizant of the state-explosion problem in model checking.  
For this report, we will define state explosion as the size of the state space exceeds the 
memory capacity of the automated tool to check every trace in the model.  [Gallardo 03]  
Through abstraction of the BMK functions in our specifications, software engineers can 
employ the concept of symbolic model checking in which Boolean functions are 
employed to represent transition relations as well as sets of states.  Specifically, they 
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should adopt a compact representation of the state space, such as that provided by binary 
decision diagrams (BDDs) to simplify the BMK states by removing sub-trees and 
redundant edges on the BMK’s Boolean decision tree. [Clarke 01]  In other words, they 
can modify the complex logic decisions at the bottom of the tree to simple Boolean 
statements so that we can capture the essence of the system behavior in the upper 
portions of the decision tree.  By reducing the high number of lower-level logic 
statements that develop very specific solutions and have limited impact on the overall 
system behavior, software engineers should be able to manage the state-explosion 
problem. 

An example of the state-explosion problem in the BMK, consider the following assertion: 

Always Intercept_Point_Min_Within_Intercept_Range <=> 
(Min_Intercept_Point ∩ Interceptor_Range_Volume) 

Note that the number of points in Interceptor_Range_Volume could be large and that we 
are seeking to ensure that one specific point (Min_Intercept_Point) is within the set of 
points that define Interceptor_Range_Volume.  Rather than use model checking to ensure 
that this condition is true, we could abstract the assertion to either a True or False for 
Intercept_Point_Min_Within_Intercept_Range.  This will reduce the number of traces 
through the model to verify this assertion. 

Framework design   

Software engineers should develop a framework in which the BMK connects to software 
components used for calculations in battle-management as well as the interfaces to 
external components of systems such as sensors, C2, and weapons.  The objective of this 
framework is to show a design of a battle manager as an integration of various 
components rather than a single software application.  In this approach, we consider 
weapon systems to be comprised of components rather than a single entity. [Caffall 03]    

By treating the each software application and each software interface as components, we 
believe that acquisition organizations can develop battle managers with more efficiency, 
reduced development times, and higher quality than current state-of-the-practice methods. 
[Crnkovic 02]  The high-level architectural view for the BMK is depicted in Figure 1: 
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Demonstration   

Software engineers should consider developing a prototype of the BMK framework and 
demonstrating its behavior, capabilities, and limitations.  They should test this prototype 
to determine the degree of system behavior predictability with respect to state transitions 
and tolerance to battlespace environmental variables. 

While the demonstration is not intended to be an exhaustive test, it will offer a degree of 
robustness to accompany the capabilities of the BMK prototype.  (N.B.:  Robustness is 
defined as the characteristic of a system that is failure and fault tolerant.  Such a system 
handles unexpected states in a manner that minimizes performance degradation, data 
corruption, and incorrect output.) 

We propose the following partial list of metrics be used as part of the BMK 
demonstration: 

1. Maximum number of concurrent tracks 

2. Percentage of processed tracks (birth to death) to total received tracks 

3. Percentage of correlated tracks to total correlation opportunities 

Figure 1.  BMK and Components 
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4. Percentage of discriminated tracks to total discrimination opportunities 

5. Percentage of weapon/target assignments to total weapon/target pairing 
opportunities 

6. Percentage of received weapon assignments to total weapon assignment 
opportunities 

7. Percentage of launch authorizations to total weapon assignment opportunities 

8. Percentage of re-engaged tracks to total re-engagement opportunities 

9. Percentage of undesired state changes to total illegal and out-of-bounds inputs 

10. Percentage of system crashes and system lockups to total illegal and out-of-
bound inputs 

Summary of recommendations 
1. We envision software engineers realizing the basic functions of battle 

management as a kernel that will remain stable over time.  Derived from the kill 
chain, the BMK will manage the use of the computing resources to ensure that all 
time-critical, battle-management events are processed as efficiently as possible. 

2. We envision software engineers developing the BMK as a real-time set of system 
functionality that addresses its use by warfighters, starting from a high-level 
statement of capabilities and refining these statements into successively lower 
levels of system artifacts.  The system artifacts should be refined from the 
perspective of developing test- and verification-ready models (i.e., 
representations of the system-of-systems that are amendable to automated testing 
and verification). 

3. Software engineers should capture the desired system behavior in the interface 
definition rather than depending solely on messaging requirements. 

4. Software engineers should construct interfaces for BMD elements such as an 
infrared sensor type, a radar type, a kinetic energy weapon, and a directed energy 
weapon. 

5. Software engineers should develop a formal representation that captures the 
desired system behavior of the BMK and verify the formal representation against 
the expected BMK properties to achieve the level of desired predictable BMK 
behavior. 

6. Software engineers should consider developing the formal representation of the 
BMK by using temporal logic to describe the functional specifications of the 
BMK.   

7. Software engineers should verify the functional specifications with the use of a 
model-checking tool to determine the degree of system behavior predictability 
with respect to state transitions and tolerance to battlespace environmental 
variables.   
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8. To avoid the state-explosion problem, software engineers should carefully model 
the fundamental behavior of the BMK rather than a comprehensive specification 
of the BMK. 

9. By incorporating assertions developed from the functional model and verified by 
the model-checking effort into the BMK, software engineers can develop 
embedded automatic test generation capabilities. 

10. Software engineers should incorporate assertions and error-handling schemes 
developed from the functional model and verified by the model-checking effort 
into the BMK.   

11. Software engineers should develop the required BMK interfaces as type 
interfaces that define the behavior of each interface and the required 
specifications to realize each interface.     

12. For ease of integration and maintainability, we propose the development of 
software components for the features that typically experience the majority of 
changes. 

Proposed advances 
It is our belief that software engineers can develop a BMK that addresses the five basic 
functions and fulfills basic warfighter usage requirements for a battle-management 
capability.  We believe that acquisition agencies within DoD can use the proposed BMK 
framework as a point of departure in the development of such systems with the potential 
benefits of acquiring systems on time, within budget, and with the desired level of 
capability as defined by the warfighters.   

In addition, we believe that this approach will extend the software engineering body of 
knowledge as follows: 

1. Demonstrate that acquisition organizations can develop real-time systems that 
exhibit a high degree of system behavior predictability in a large distributed system. 

2. Provide a battle-management kernel that acquisition organizations can base 
future battle-management system developments on the battle-management kernel. 
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Glossary 

Acquisition:  The process in which the Department of Defense obtains materiel solutions 
to identified problems in mission need statements. 

Assertion:  A predicate expression whose value is either true or false. 

Algorithm:  A set of logical and mathematical processes to accomplish a given function 
with a processor or computer.    

Ballistic missile:  A rocket-propelled vehicle moving under its own momentum and the 
force of gravity that does not rely upon aerodynamic surfaces to produce lift and 
consequently follows a ballistic trajectory when thrust is terminated.  

Ballistic missile defense:  All active and passive measures designed to detect, identify, 
track, and defeat attacking ballistic missiles (and entities), in both strategic and theater 
tactical roles, during any portion of their flight trajectory (boost, ascent, midcourse, or 
terminal) or to nullify or reduce the effectiveness of such an attack.    

Battle management:  The decisions and actions executed in direct response to the 
activities of enemy forces in support of the Joint Chiefs of Staff’s precision engagement 
concept. 

Battle-management kernel:  The software that contains the basic functions of battle 
management that will remain stable over time.  Derived from the kill chain, these basic 
battle-management functions are called tasks, and will manage the use of the system’s 
computing resources to ensure that all time-critical, battle-management events are 
processed as efficiently as possible. 

Battlespace: All aspects of air, surface, subsurface, land, space, and the electromagnetic 
spectrum that encompass the area of influence and area of interest.  

Central processing unit:  A section of a computer responsible for execution of 
programs. This section manipulates the data, generates control signals, and stores results.  

Chain of command: The succession of commanding officers from a superior to a 
subordinate through which command is exercised.  

Classification:  The process of establishing the type of an object being tracked.  The 
object type out of the classification process may be high level (e.g., an air vehicle, an 
ASM, a TBM object, an interceptor missile, or unknown type) or very specific (e.g., 
SCUD B, SM-2, etc. 

Coalition:  An ad hoc arrangement between two or more nations for common action. 

Combatant command: One of the unified or specified combatant commands established 
by the President.  

Combatant command (command authority): Non-transferable command authority 
established by Title 10, United States Code, section 164, exercised only by commanders 
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of unified or specified combatant commands unless otherwise directed by the President or 
the Secretary of Defense. Combatant command (command authority) is the authority of a 
combatant commander to perform those functions of command over assigned forces 
involving organizing and employing commands and forces, assigning tasks, designating 
objectives, and giving authoritative direction over all aspects of military operations, joint 
training, and logistics necessary to accomplish the missions assigned to the command. 
Also called COCOM.  

Combatant commander: A commander in chief of one of the unified or specified 
combatant commands established by the President.  

Combat information: Unevaluated data gathered by or provided directly to the tactical 
commander that, due to its highly perishable nature or the criticality of the situation, 
cannot be processed into tactical intelligence in time to satisfy the users’ tactical 
intelligence requirements.  

Command: 1. The authority that a commander in the Armed Forces lawfully exercises 
over subordinates by virtue of rank or assignment. Command includes the authority and 
responsibility for effectively using available resources and for planning the employment 
of, organizing, directing, coordinating, and controlling military forces for the 
accomplishment of assigned missions. It also includes responsibility for health, welfare, 
morale, and discipline of assigned personnel. 2. An order given by a commander; that is, 
the will of the commander expressed for the purpose of bringing about a particular action. 
3. A unit or units, an organization, or an area under the command of one individual. 

Command and control: The exercise of authority and direction by a properly designated 
commander over assigned and attached forces in the accomplishment of the mission. 
Command and control functions are performed through an arrangement of personnel, 
equipment, communications, facilities, and procedures employed by a commander in 
planning, directing, coordinating, and controlling forces and operations in the 
accomplishment of the mission.  

Command and control system: The facilities, equipment, communications, procedures, 
and personnel essential to a commander for planning, directing, and controlling 
operations of assigned forces pursuant to the missions assigned.  

Command, Control, Communications, and Computer Systems (C4 Systems). 
Integrated systems of doctrine, procedures, organizational structures, personnel, 
equipment, facilities, and communications designed to support a commander’s exercise 
of command and control through all phases of the operational continuum.  

Command and control warfare: The integrated use of operations security (OPSEC), 
military deception, psychological operations (PSYOP), electronic warfare (EW), and 
physical destruction, mutually supported by intelligence, to deny information to, 
influence, degrade, or destroy adversary command and control capabilities, while 
protecting friendly command and control capabilities against such actions. Command and 
control warfare applies across the operational continuum and at all levels of conflict. Also 
called C2W. C2W is both offensive and defensive: a. counter-C2-To prevent effective C2 
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of adversary forces by denying information to, influencing, degrading, or destroying the 
adversary C2 system. b. C2-protection-To maintain effective command and control of 
own forces by turning to friendly advantage or negating adversary efforts to deny 
information to, influence, degrade, or destroy the friendly C2 system.  

Component:  A software unit of composition with contractually specified interfaces and 
explicit context dependencies.   

Control: Authority which may be less than full command exercised by a commander 
over part of the activities of subordinate or other organizations.  

Correlation:  The process of assigning or computing weights to determine that two or 
more sensed tracks are for the same object.    

Crisis action planning:  The time-sensitive planning for the deployment, employment, 
and sustainment of assigned and allocated forces and resources that occurs in response to 
a situation that may result in actual military operations. Crisis action planners base their 
plan on the circumstances that exist at the time planning occurs. Also called CAP  

Data: A representation of individual facts, concepts, or instructions in a manner suitable 
for communication, interpretation, or processing by humans or by automatic means.  

Deliberate planning:  A planning process for the deployment and employment of 
apportioned forces and resources that occurs in response to a hypothetical situation. 
Deliberate planners rely heavily on assumptions regarding the circumstances that will 
exist when the plan is executed. 

Detection:  Discrimination of an object from its background and its assignment to the 
class of potentially interesting objects. 

Discrimination:  Process that allows selecting lethal from non-lethal targets in same 
threat complex.  The process usually involves sensors, signal/data processors, feature 
extraction algorithms, and decision architectures.       

Domain analysis:  The process of identifying and formalizing constraints on input, state, 
and output values. 

Dominant maneuver:  The ability of joint forces to gain positional advantage with 
decisive speed and overwhelming operational tempo in the achievement of assigned 
military tasks. 

Endo-atmospheric:  Within the earth’s atmosphere.   The altitude commonly used to 
separate the endo- and exo-atmospheric regimes varies from 100 km to 120 km.   

Engage:  A fire control order used to direct or authorize units and/or weapon systems to 
fire on a designated target. 

Engagement:  A tactical conflict, usually between opposing lower echelons maneuver 
forces.  

Exo-atmospheric:  Above the atmosphere where the drag is negligible.  The altitude 
commonly used to separate the endo- and exo-atmospheric regimes varies from 100 km 
to 120 km. 



 31 
 

 

Failure:  The inability of a system or component to perform a required function within 
specified limits. 

Fault:  An incorrect statement, step, process, or data definition in a software program. 

Focused logistics:  The ability to provide the joint force the right personnel, equipment, 
and supplies in the right place, at the right time, and in the right quantity, across the full 
range of military operations. 

Full dimensional protection:  The ability of the joint force to protect its personnel and 
other assets required to decisively execute assigned tasks. 

Glueware:  The software application that integrates a number of  components through 
interfaces to the software application for the purpose of achieving a broader capability 
than any of the individual components. 

Identification:  The process of determining that a tracked object is a friendly, neutral, 
hostile, or unknown object, or the result of that process.    

Information: The meaning that a human assigns to data by means of the known 
conventions used in their representation.  

Intelligence: The product resulting from the collection, processing, integration, analysis, 
evaluation, and interpretation of available information concerning foreign countries or 
areas.  

Interface:  Software that enables an application to work with user, another application, 
operating system, or computer hardware. 

Interoperability:  The ability of systems, units, or forces to provide services to and 
accept services from other systems, units, or forces and to use the services so exchanged 
to enable them to operate effectively together.  

Joint:  Connotes activities, operations, organizations, etc., in which elements of two or 
more Military Departments participate.  

Joint force: A general term applied to a force composed of significant elements, assigned 
or attached, of two or more Military Departments, operating under a single joint force 
commander.  

Joint task force: A joint force that is constituted and so designated by the Secretary of 
Defense, a combatant commander, a sub-unified commander, or an existing joint task 
force commander.  

Kernel (real-time):  A real-time kernel is software that manages the use of the CPU and 
memory to ensure that all time-critical events are processed as efficiently as possible.  A 
real-time kernel can help simplify a software design because it allows a project to be 
divided into multiple independent elements called tasks.  

Kernel (battle management):  The part of a system, including software, that when all 
functions not essential to battle management are taken away, remains, and that functions 
even when one or more non-essential functions are disabled. 
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Kill assessment:  A process, based on sensor data, that examines in real time the results 
of an engagement and determines whether the warhead was broken open or not.  Based 
on the outcome the battle manager would decide to or not to fire again at that target.   

Kill chain:  The sequence of events that must occur for a threat to successfully engage 
and kill its target.  For this dissertation, the elements of the kill chain are:   Detect, Track, 
Assign Weapon, Engage, and Kill Assessment.  

Link 16 (formerly TADIL-J):  A secure, high capacity, jam-resistant, node-less data 
link which uses the Joint Tactical Information Distribution System (JTIDS) transmission 
characteristics and the protocols, conventions, and fixed-length message formats defined 
by the JTIDS Technical Interface Design Plan (TIDP).      

Mission: The task, together with the purpose, that clearly indicates the action to be taken 
and the reason therefore. 

Mission type order: Order to a unit to perform a mission without specifying how it is to 
be accomplished.  

Model checking:  The systematic approach for testing functional assertions and 
substantiating the desired system behavior in the model. Model checking is not a proof of 
correctness; however, model checking involves creating functional models of a system 
and analyzing the model against the formal representations of the desired behavior. 

Operational control: Transferable command authority that may be exercised by 
commanders at any echelon at or below the level of combatant command. Operational 
control is inherent in Combatant Command (command authority) and is the authority to 
perform those functions of command over subordinate forces involving organizing and 
employing commands and forces, assigning tasks, designating objectives, and giving 
authoritative direction necessary to accomplish the mission. Also called OPCON.  

Planning:  That military planning that produces either an Operation Plan (OPLAN) or an 
Operations Order (OPORD) to employ military force against an adversary. 

Precision engagement:  The ability of joint forces to locate, surveil, discern, and track 
objectives or targets; select, organize, and use the correct systems; generate desired 
effects, assess results; and reengage with decisive speed and overwhelming operational 
tempo as required, throughout the full range of military operations. 

Predicate:  A function that represents the truth or falsehood of some condition. 

Real-time:  A problem, system, or application that is concurrent in nature and has timing 
constraints whereby incoming events must be processed within a given timeframe. 

Robustness:  A characteristic of a system that is failure and fault tolerant.  Such a system 
handles unexpected states in a manner that minimizes performance degradation, data 
corruption, and incorrect output. 
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Rules of engagement:  Directives issued by competent military authority that delineate 
the circumstances and limitations under which United States forces will initiate and/or 
continue combat engagement with other forces encountered. Also called ROE.  

Schedulability:  The determination of whether a group of tasks, whose individual CPU 
utilization is known, will meet their deadlines. 

Sensor:  A device that responds to a physical stimulus (as heat, light, sound, pressure, 
magnetism, or a particular motion) and transmits a resulting impulse for measurement or 
operating a control. 

Sensor netting:  Process of sharing information about targets of interest collected by two 
or more sensors with the objective of improving defense’s knowledge of targets. 
Objective of sensor netting is to improve accuracy of sensor data by correlating, fusing, 
integrating, weighting, or associating sensed information at one or more locations in 
netted community.  Process can be centralized, distributed, or hierarchical. 

Situational awareness:  Perception of available facts, comprehension of the facts in 
relation to the individual’s expert knowledge, and projecting how the situation is likely to 
develop in the future. 

Specified command: A command that has broad continuing missions and that is 
established by the President through the Secretary of Defense with the advice and 
assistance of the Chairman of the Joint Chiefs of Staff. It normally is composed of forces 
from a single Military Department. Also called specified combatant command.  

State:  A recognizable situation that exists over an interval of time. 

State explosion:  The condition in which the size of the state space grows exponentially. 

State transition:  A change in state that is caused by an input event. 

Surveillance: The systematic observation of aerospace, surface or subsurface areas, 
places, persons, or things, by visual, aural, electronic, photographic, or other means.  

System-of-systems:  An amalgamation of legacy systems and developing systems that 
provide an enhanced military capability greater than that of any of the individual systems 
within the system-of-systems. 

Tactical control: The detailed and, usually, local direction and control of movements or 
maneuvers necessary to accomplish missions or tasks assigned. Also called TACON.  

Targeting: 1. The process of selecting targets and matching the appropriate response to 
them taking account of operational requirements and capabilities. 2. The analysis of 
enemy situations relative to the commander’s mission, objectives, and capabilities at the 
commander’s disposal, to identify and nominate specific vulnerabilities that, if exploited, 
will accomplish the commander’s purpose through delaying, disrupting, disabling, or 
destroying enemy forces or resources critical to the enemy.  

Task:  A task is a program that competes for CPU time and is generally written as an 
infinite loop 
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Temporal logic:  An extension of propositional logic that incorporates special operators 
that cater for time. With temporal logic one can specify how components, protocols, 
objects, modules, procedures and functions behave as time progresses. The specification 
is done with temporal logic statements that make assertions about properties and 
relationships in the past, present, and the future. 

Test-ready model:  A model that contains sufficient information to automatically 
produce test cases for its implementation. 

Time-critical task:  A task for which there is a deadline for which the task must usually 
(soft) or must always (hard) meet. 

Time-critical targets:  Those targets requiring immediate response because they pose (or 
will soon pose) a clear and present danger to friendly forces, or are highly lucrative, 
fleeting targets of opportunity.    

Track:  1.  Estimated position/velocity states and a representation of the uncertainty of 
the estimate for an object or unresolved cluster of objects based on filtered observations 
from one or more sensors.  2.  Estimated trajectory of an apparent object or group of 
objects. 3.  Sequence of observations judged to be from the same object or group of 
objects 

Unified command: A command with broad continuing missions under a single 
commander and composed of forces from two or more Military Departments, and which 
is established by the President, through the Secretary of Defense with the advice and 
assistance of the Chairman of the Joint Chiefs of Staff. Also called unified combatant 
command.  

Validation:  Confirmation by examination and provisions of objective evidence that the 
particular requirements for a specific intended use are fulfilled. 

Verification:  Confirmation by examiniation and provisions of objective evidence that 
specified requirements have been fulfilled. 

Weapon tasking:  Message sent to weapon by battle manager that contains information 
such as target-weapon pairing, launch time, etc.    
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Acronyms 

AADC Area air defense commander  

ABL Airborne laser  

ABM Anti-ballistic missile  

ACTD Advanced concept technology demonstration  

AD Air defense 

ADA Air defense artillery 

ADCP Air defense communications platform  

ADG Active defense group  

ALERT Attack and launch early report to theater  

AO Area of Operations 

AOA Amphibious objective area  

AOC Air Operations Center 

AOR Area of responsibility  

ATACMS Army tactical missile system  

ATO Air tasking order 

AWACS Airborne warning and control system  

BDA Battle damage assessment  

BMC4I Battle-management command, control, communications, computers, and 
intelligence  

BMD Ballistic missile defense  

BMDS Ballistic missile defense system 

BMK Battle-management kernel 

BPI Boost-phase intercept 

CAP Crisis action planning 

C2 Command and control CAP Combat air patrol  

C3I Command, Control, Communications, and intelligence 
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CEC Cooperative engagement capability  

CENTCOM United States Central Command  

CEP Circular error probable  

CIC Combat information center  

CJCS Chairman, Joint Chiefs of Staff 

CM Configuration management 

CO Commanding officer  

COA Course of action 

COCOM Combatant Commander 

COEA Cost and operational effectiveness analysis  

CONOPS Concept of operations  

CONPLAN Operations plan in concept format 

CONUS Continental United States (excluding Alaska and Hawaii)  

COP Common operational picture 

COTS Commercial off the shelf 

CPU Central processing unit 

CRC Control and reporting center  

DAL Defended asset list  

DE Directed energy  

DIA Defense Intelligence Agency  

DII COE Defense information infrastructure common operating environment 

DISA Defense Information Systems Agency 

DoD Department of Defense  

DSP Defense Support Program  

EO Electrical-optical 

EUCOM United States European Command  

EW Early warning  
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EXORD Execute order 

GAO General Accounting Office 

GBI Ground-based interceptor 

GBR [THAAD] Ground-based radar  

GCCS Global command and control system  

GEM Guidance enhanced missile (PATRIOT) 

GGIG Global information grid 

GMD Ground-based Missile Defense 

GPS Global Positioning System  

HQ Headquarters 

IA Information assurance 

ICBM Intercontinental ballistic missile  

ICC Information Coordination Central (PATRIOT) 

IER Information exchange requirement 

IOC Initial operational capability  

IPB Intelligence preparation of the battle space  

IR Infrared  

IRBM Intermediate-range ballistic missile 

IRST Infrared search and track  

ITW/AA Integrated tactical warning/attack assessment 

JCS Joint Chiefs of Staff  

JCTN Joint composite tracking network  

JDN Joint data network  

JEZ Joint engagement zone 

JFACC Joint force air component commander  

JFC Joint force commander  

JFCOM Joint Forces Command 
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JFMCC Joint force maritime component commander  

JIC Joint intelligence center 

JMCIS Joint maritime command information system  

JP Joint publication 

JPN Joint planning network  

JS Joint staff 

JSOC Joint Special Operations Command  

JSTARS Joint surveillance and target attack radar system  

JTA Joint technical architecture 

JTAGS Joint tactical ground station  

JTF Joint task force 

JTIDS Joint tactical information distribution system  

JTMD Joint theater missile defense  

KE Kinetic energy  

KV Kill vehicle 

KW Kinetic warhead  

MDA Missile Defense Agency 

MEADS Medium extended air defense system  

MEZ Missile engagement zone  

MNS Mission need statement 

MLRS Multiple launch rocket system  

MRBM Medium-range ballistic missile  

NATO North Atlantic Treaty Organization  

NBC nuclear, biological, and chemical 

NCA National Command Authority  

NMCC National Military Command Center 

NMD National missile defense 



 39 
 

 

NORTHCOM United States Northern Command 

OCONUS Outside the continental United States 

OOAD Object-oriented analysis and design 

OOB Operational order of battle  

OODA Observe, orient, decide, act  

OPLAN Operations plan 

OPORD Operations order 

OSD Office of the Secretary of Defense 

PAC Patriot advanced capability  

PACOM Pacific Command 

PATRIOT phased array tracking radar intercept on target  

PDAL Prioritized defended asset list 

Pk Probability of kill  

POM Program objective memorandum  

R&D Research and development  

RAS Replenishment at sea  

RCS Radar cross-section  

R&D Research and development 

RDT&E Research, development, test, and evaluation 

RF Radio frequency  

ROE Rules of engagement  

RV Reentry vehicle  

SAM Surface-to-air missile  

SATCOM Satellite communications  

SBIRS-LOW Space-based infrared system-low earth orbit  

SBWS Space-based warning system (DSP + TES)  

SDI Strategic Defense Initiative  
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SMTS Space and missile tracking system  

SOCOM United States Special Operations Command 

SOF Special operations forces  

STRATCOM United States Strategic Command 

SRBM Short-range ballistic missile  

TACON Tactical control 

TAOC Tactical air operations center  

TBM Theater ballistic missile  

TBM-WMD Theater ballistic missile—weapons of mass destruction  

TBMD Theater ballistic missile defense  

TCT Time critical target 

TDDS Tactical data distribution system  

TEL Transporter-erector-launcher (for TBM)  

THAAD Theater high-altitude area defense  

TIBS Tactical information broadcast service  

TLAM Tomahawk land attack missile  

TM Theater missile  

TMD Theater missile defense  

TOC Tactical operations center  

TPFDD Time-phased force and deployment data 

TPFDL Time-phased force and deployment list  

TRAP TRE and related applications (now TDDS)  

TRE Tactical receive equipment  

UAV Unmanned aerial vehicle 

UCP Unified Command Plan 

UML Unified Modeling Language 

UOES User operational evaluation system  
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USA United States Army 

USAF United States Air Force 

USMC United States Marine Corps 

USN United States Navy 

VCJCS Vice-Chairman, Joint Chiefs of Staff 

WMD Weapons of mass destruction 
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Glossary of Logic Symbols 
& and 

| or 

<=> if and only if 

=> implies 

> greater than 

< less than 

> greater than or equal to 

< less than or equal to 

∩ intersect 

U union 

= equals 

≠ does not equal 

∀  for all (∀ x means that for all x…) 

∃  there exists (∃ x means that there exists an x such that…) 

¬  not 

// comment 
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